Langevin Process Reflected on a Partially Elastic Boundary II

A particle subject to a white noise external forcing moves according to a Langevin process. Consider now that the particle is reflected at a boundary which restores a portion c of the incoming speed at each bounce. For c strictly smaller than the critical value$$c_{\mathit{crit}} =\exp (-\pi /\sqrt{...

Full description

Saved in:
Bibliographic Details
Published inSéminaire de Probabilités XLV pp. 245 - 275
Main Author Jacob, Emmanuel
Format Book Chapter
LanguageEnglish
Published Heidelberg Springer International Publishing 2013
SeriesLecture Notes in Mathematics
Subjects
Online AccessGet full text
ISBN3319003208
9783319003207
ISSN0075-8434
1617-9692
DOI10.1007/978-3-319-00321-4_9

Cover

Loading…
Abstract A particle subject to a white noise external forcing moves according to a Langevin process. Consider now that the particle is reflected at a boundary which restores a portion c of the incoming speed at each bounce. For c strictly smaller than the critical value$$c_{\mathit{crit}} =\exp (-\pi /\sqrt{3})$$, the bounces of the reflected process accumulate in a finite time, yielding a very different behavior from the most studied cases of perfectly elastic reflection—c = 1—and totally inelastic reflection—c = 0. We show that nonetheless the particle is not necessarily absorbed after this accumulation of bounces. We define a “resurrected” reflected process as a recurrent extension of the absorbed process, and study some of its properties. We also prove that this resurrected reflected process is the unique solution to the stochastic partial differential equation describing the model, for which well-posedness is nothing obvious. Our approach consists in defining the process conditioned on never being absorbed, via an h-transform, and then giving the Itō excursion measure of the recurrent extension thanks to a formula fairly similar to Imhof’s relation.
AbstractList A particle subject to a white noise external forcing moves according to a Langevin process. Consider now that the particle is reflected at a boundary which restores a portion c of the incoming speed at each bounce. For c strictly smaller than the critical value$$c_{\mathit{crit}} =\exp (-\pi /\sqrt{3})$$, the bounces of the reflected process accumulate in a finite time, yielding a very different behavior from the most studied cases of perfectly elastic reflection—c = 1—and totally inelastic reflection—c = 0. We show that nonetheless the particle is not necessarily absorbed after this accumulation of bounces. We define a “resurrected” reflected process as a recurrent extension of the absorbed process, and study some of its properties. We also prove that this resurrected reflected process is the unique solution to the stochastic partial differential equation describing the model, for which well-posedness is nothing obvious. Our approach consists in defining the process conditioned on never being absorbed, via an h-transform, and then giving the Itō excursion measure of the recurrent extension thanks to a formula fairly similar to Imhof’s relation.
Author Jacob, Emmanuel
Author_xml – sequence: 1
  givenname: Emmanuel
  surname: Jacob
  fullname: Jacob, Emmanuel
  email: emmanuel.jacob@normalesup.org
BookMark eNpFkEFLw0AQhVetYFv9BV72D6zOZJPd7MGDlqqBgkX0vMwmE4mGRLJR6L9vrIKnYebxhve-hZh1fcdCXCJcIYC9djZXWml0CkAnqFLvjsRCT4fDbo7FHA1a5YxLTv4FyGdiPvkzlac6PROLGN8BkixNYS5uNtS98XfTye3QlxyjfOa65XLkSvadJLmlYWyobXdy3VIcm1Le9V9dRcNOFsW5OK2pjXzxN5fi9X79snpUm6eHYnW7URGdHZUt85AYYHCaiTGwMZYRKSGqQYcsNRwMayy5qqzLqwTBhsxSTTrozFV6KfD3b_wcminv4EPff0SP4H_I-ImM137q6w8k_ERG7wFl7VOq
ContentType Book Chapter
Copyright Springer International Publishing Switzerland 2013
Copyright_xml – notice: Springer International Publishing Switzerland 2013
DOI 10.1007/978-3-319-00321-4_9
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 3319003216
9783319003214
EISSN 1617-9692
Editor Lejay, Antoine
Rouault, Alain
Donati-Martin, Catherine
Editor_xml – sequence: 1
  givenname: Catherine
  surname: Donati-Martin
  fullname: Donati-Martin, Catherine
  email: catherine.donati-martin@uvsq.fr
– sequence: 2
  givenname: Antoine
  orcidid: 0000-0003-0406-9550
  surname: Lejay
  fullname: Lejay, Antoine
  email: Antoine.Lejay@iecn.u-nancy.fr
– sequence: 3
  givenname: Alain
  surname: Rouault
  fullname: Rouault, Alain
  email: alain.rouault@math.uvsq.fr
EndPage 275
GroupedDBID -GH
-~C
1SB
29L
2HD
2HY
5GY
ABMNI
ABZEH
ACGFS
ACNCT
AENEX
AHDLI
ALMA_UNASSIGNED_HOLDINGS
DU5
LDK
RIG
RSU
SVGTG
UQL
VI1
WH7
ID FETCH-LOGICAL-s197t-7c8b260e093eae1be667e11a2aaf03b546eb6e31cedd798d2107b57afa3b359d3
IEDL.DBID LDK
ISBN 3319003208
9783319003207
ISSN 0075-8434
IngestDate Tue Jul 29 20:28:36 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-s197t-7c8b260e093eae1be667e11a2aaf03b546eb6e31cedd798d2107b57afa3b359d3
Notes Original Abstract: A particle subject to a white noise external forcing moves according to a Langevin process. Consider now that the particle is reflected at a boundary which restores a portion c of the incoming speed at each bounce. For c strictly smaller than the critical value \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$c_{\mathit{crit}} =\exp (-\pi /\sqrt{3})$$ \end{document}, the bounces of the reflected process accumulate in a finite time, yielding a very different behavior from the most studied cases of perfectly elastic reflection—c = 1—and totally inelastic reflection—c = 0. We show that nonetheless the particle is not necessarily absorbed after this accumulation of bounces. We define a “resurrected” reflected process as a recurrent extension of the absorbed process, and study some of its properties. We also prove that this resurrected reflected process is the unique solution to the stochastic partial differential equation describing the model, for which well-posedness is nothing obvious. Our approach consists in defining the process conditioned on never being absorbed, via an h-transform, and then giving the Itō excursion measure of the recurrent extension thanks to a formula fairly similar to Imhof’s relation.
PageCount 31
ParticipantIDs springer_books_10_1007_978_3_319_00321_4_9
PublicationCentury 2000
PublicationDate 2013
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationSeriesSubtitle Séminaire de Probabilités
PublicationSeriesTitle Lecture Notes in Mathematics
PublicationSeriesTitleAlternate Lect.Notes Mathematics
PublicationTitle Séminaire de Probabilités XLV
PublicationYear 2013
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
SSID ssj0025440
ssj0000963130
Score 1.4434184
Snippet A particle subject to a white noise external forcing moves according to a Langevin process. Consider now that the particle is reflected at a boundary which...
SourceID springer
SourceType Publisher
StartPage 245
SubjectTerms Excursion measure
Langevin process
Recurrent extension
Second order reflection
Stochastic differential equation
transform
Title Langevin Process Reflected on a Partially Elastic Boundary II
URI http://link.springer.com/10.1007/978-3-319-00321-4_9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKWYCBt3jLAxNSKqd-ZgVataAihCjqFtmOw0CVSm06lF_P2WkyAEtHS_FF_mz5Xv7uELrtkiyTlsaRgR0HB4W5SAmnImJzxaw1ubA-oD96EYMxe5rwSQvxmgsTXrvXKclwU9dktyqPHzg3hHZBbppsoW0qQcP7GpKPz01oBaxyGqzitd_FGauYKJJHilHf6YmCHC-GqKoITzOWTWWif__4J18a1FB_H33UC6hen3x1lqXp2O9ftR03XuEB2vOcB-zJCIDzIWq54gjtjpqSrotj5NnSn6BFC7zmFuA3l_uYv8vwrMAav_pDqKfTFe6BRQ6T8H1o2TRf4eHwBI37vfeHQbTuvRAt4kSWkbTKgKvjSEKddrFxQkgXx7qrdU6o4Uw4IxyNrYO9TlQGnqM0XOpcU0N5ktFT1C5mhTtD2BEBZmke64RSZrgwVrKMKphH8gRG5-iuhiP1nsUirUspAyApTQGQNACSAiAXm3x8iXa6oXuFj5hcoXY5X7prsCFKcxNOzA_Le7R4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b8MgEEZpOvQx9K2-y9CpkiPbYLDXPqKkeaiqkiobAow7NHKkxBnSX98Dxx7aLhmRzFl8ILg7-L5D6D7005RrEngKZhwCFGq8mJnY83UWU61VxrRN6A-GrDOmr5No0kBRxYVxr92rK0m3U1dkt_Ie33FufBKCXZFsoW0aQnxiNSSfe3VqBbxy4rziddwVUVoyUXjkxZTYSk8E7FgzflyK8NRtXisT_fvHP_el7hhqH6CPagDl65Ov1rJQLf39S9tx4xEeon3LecCWjAA4H6GGyY_R3qCWdF2cIMuW_oRTNMdrbgF-N5nN-ZsUz3Is8ZtdhHI6XeEX8MihE350JZvmK9ztnqJx-2X01PHWtRe8RZDwwuM6VhDqGD8hRppAGca4CQIZSpn5REWUGcUMCbSBuU7iFCJHriIuM0kUiZKUnKFmPsvNOcLGZ-CWZoFMCKEqYkpzmpIY-vlZAq0L9FDBIWxksRCVlDIAIogAQIQDRAAgl5t8fId2OqNBX_S7w94V2g1dJQubPblGzWK-NDfgTxTq1q2eH0nUt1c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagSAgYeIs3HpiQ0jqxYycrtFVLH6oQldgi23EYqFLUpEP59ZyTJgOwIEZLsS1_Oeme3x1Cdx6JY6Gp6yj44-CgMOME3AQO0UnAtFYJ1zagPxrz3pQ9vfpVNWFWVbtXKcmS02C7NKV56yNOqqx-q8zpF_wbQj24Iwo30RYDZWmr-obtQR1mAQudFhby2gfzGStZKcJ3Akbt1CcK59hjSFA25KnXou5S9OuNP3KnhUrq7iNVPaasRHlvLnPV1J_f-jz-67UHaM9yIbAlKQD-h2jDpEdod1S3es2OkWVRv4F2TfGac4CfTWJzASbG8xRLPLHCKWezFe6ApQ6b8EMxymmxwv3-CZp2Oy-PPWc9k8HJ3FDkjtCBAhfIkJAaaVxlOBfGdaUnZUKo8hk3ihvqagMyEAYxeJRC-UImkirqhzE9RY10npozhA3hYK4mrgwpZcrnSgsW0wD2kSSE1Tm6r6CJrMeRRVWLZQAkohEAEhWARADIxV8-vkXbk3Y3GvbHg0u04xUDLmxQ5Qo18sXSXIOZkaubQpC-AJ_NwDI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=S%C3%A9minaire+de+Probabilit%C3%A9s+XLV&rft.au=Jacob%2C+Emmanuel&rft.atitle=Langevin+Process+Reflected+on+a+Partially+Elastic+Boundary+II&rft.series=Lecture+Notes+in+Mathematics&rft.date=2013-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319003207&rft.issn=0075-8434&rft.eissn=1617-9692&rft.spage=245&rft.epage=275&rft_id=info:doi/10.1007%2F978-3-319-00321-4_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0075-8434&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0075-8434&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0075-8434&client=summon