Langevin Process Reflected on a Partially Elastic Boundary II
A particle subject to a white noise external forcing moves according to a Langevin process. Consider now that the particle is reflected at a boundary which restores a portion c of the incoming speed at each bounce. For c strictly smaller than the critical value$$c_{\mathit{crit}} =\exp (-\pi /\sqrt{...
Saved in:
Published in | Séminaire de Probabilités XLV pp. 245 - 275 |
---|---|
Main Author | |
Format | Book Chapter |
Language | English |
Published |
Heidelberg
Springer International Publishing
2013
|
Series | Lecture Notes in Mathematics |
Subjects | |
Online Access | Get full text |
ISBN | 3319003208 9783319003207 |
ISSN | 0075-8434 1617-9692 |
DOI | 10.1007/978-3-319-00321-4_9 |
Cover
Loading…
Abstract | A particle subject to a white noise external forcing moves according to a Langevin process. Consider now that the particle is reflected at a boundary which restores a portion c of the incoming speed at each bounce. For c strictly smaller than the critical value$$c_{\mathit{crit}} =\exp (-\pi /\sqrt{3})$$, the bounces of the reflected process accumulate in a finite time, yielding a very different behavior from the most studied cases of perfectly elastic reflection—c = 1—and totally inelastic reflection—c = 0. We show that nonetheless the particle is not necessarily absorbed after this accumulation of bounces. We define a “resurrected” reflected process as a recurrent extension of the absorbed process, and study some of its properties. We also prove that this resurrected reflected process is the unique solution to the stochastic partial differential equation describing the model, for which well-posedness is nothing obvious. Our approach consists in defining the process conditioned on never being absorbed, via an h-transform, and then giving the Itō excursion measure of the recurrent extension thanks to a formula fairly similar to Imhof’s relation. |
---|---|
AbstractList | A particle subject to a white noise external forcing moves according to a Langevin process. Consider now that the particle is reflected at a boundary which restores a portion c of the incoming speed at each bounce. For c strictly smaller than the critical value$$c_{\mathit{crit}} =\exp (-\pi /\sqrt{3})$$, the bounces of the reflected process accumulate in a finite time, yielding a very different behavior from the most studied cases of perfectly elastic reflection—c = 1—and totally inelastic reflection—c = 0. We show that nonetheless the particle is not necessarily absorbed after this accumulation of bounces. We define a “resurrected” reflected process as a recurrent extension of the absorbed process, and study some of its properties. We also prove that this resurrected reflected process is the unique solution to the stochastic partial differential equation describing the model, for which well-posedness is nothing obvious. Our approach consists in defining the process conditioned on never being absorbed, via an h-transform, and then giving the Itō excursion measure of the recurrent extension thanks to a formula fairly similar to Imhof’s relation. |
Author | Jacob, Emmanuel |
Author_xml | – sequence: 1 givenname: Emmanuel surname: Jacob fullname: Jacob, Emmanuel email: emmanuel.jacob@normalesup.org |
BookMark | eNpFkEFLw0AQhVetYFv9BV72D6zOZJPd7MGDlqqBgkX0vMwmE4mGRLJR6L9vrIKnYebxhve-hZh1fcdCXCJcIYC9djZXWml0CkAnqFLvjsRCT4fDbo7FHA1a5YxLTv4FyGdiPvkzlac6PROLGN8BkixNYS5uNtS98XfTye3QlxyjfOa65XLkSvadJLmlYWyobXdy3VIcm1Le9V9dRcNOFsW5OK2pjXzxN5fi9X79snpUm6eHYnW7URGdHZUt85AYYHCaiTGwMZYRKSGqQYcsNRwMayy5qqzLqwTBhsxSTTrozFV6KfD3b_wcminv4EPff0SP4H_I-ImM137q6w8k_ERG7wFl7VOq |
ContentType | Book Chapter |
Copyright | Springer International Publishing Switzerland 2013 |
Copyright_xml | – notice: Springer International Publishing Switzerland 2013 |
DOI | 10.1007/978-3-319-00321-4_9 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISBN | 3319003216 9783319003214 |
EISSN | 1617-9692 |
Editor | Lejay, Antoine Rouault, Alain Donati-Martin, Catherine |
Editor_xml | – sequence: 1 givenname: Catherine surname: Donati-Martin fullname: Donati-Martin, Catherine email: catherine.donati-martin@uvsq.fr – sequence: 2 givenname: Antoine orcidid: 0000-0003-0406-9550 surname: Lejay fullname: Lejay, Antoine email: Antoine.Lejay@iecn.u-nancy.fr – sequence: 3 givenname: Alain surname: Rouault fullname: Rouault, Alain email: alain.rouault@math.uvsq.fr |
EndPage | 275 |
GroupedDBID | -GH -~C 1SB 29L 2HD 2HY 5GY ABMNI ABZEH ACGFS ACNCT AENEX AHDLI ALMA_UNASSIGNED_HOLDINGS DU5 LDK RIG RSU SVGTG UQL VI1 WH7 |
ID | FETCH-LOGICAL-s197t-7c8b260e093eae1be667e11a2aaf03b546eb6e31cedd798d2107b57afa3b359d3 |
IEDL.DBID | LDK |
ISBN | 3319003208 9783319003207 |
ISSN | 0075-8434 |
IngestDate | Tue Jul 29 20:28:36 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-s197t-7c8b260e093eae1be667e11a2aaf03b546eb6e31cedd798d2107b57afa3b359d3 |
Notes | Original Abstract: A particle subject to a white noise external forcing moves according to a Langevin process. Consider now that the particle is reflected at a boundary which restores a portion c of the incoming speed at each bounce. For c strictly smaller than the critical value \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$c_{\mathit{crit}} =\exp (-\pi /\sqrt{3})$$ \end{document}, the bounces of the reflected process accumulate in a finite time, yielding a very different behavior from the most studied cases of perfectly elastic reflection—c = 1—and totally inelastic reflection—c = 0. We show that nonetheless the particle is not necessarily absorbed after this accumulation of bounces. We define a “resurrected” reflected process as a recurrent extension of the absorbed process, and study some of its properties. We also prove that this resurrected reflected process is the unique solution to the stochastic partial differential equation describing the model, for which well-posedness is nothing obvious. Our approach consists in defining the process conditioned on never being absorbed, via an h-transform, and then giving the Itō excursion measure of the recurrent extension thanks to a formula fairly similar to Imhof’s relation. |
PageCount | 31 |
ParticipantIDs | springer_books_10_1007_978_3_319_00321_4_9 |
PublicationCentury | 2000 |
PublicationDate | 2013 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – year: 2013 text: 2013 |
PublicationDecade | 2010 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationSeriesSubtitle | Séminaire de Probabilités |
PublicationSeriesTitle | Lecture Notes in Mathematics |
PublicationSeriesTitleAlternate | Lect.Notes Mathematics |
PublicationTitle | Séminaire de Probabilités XLV |
PublicationYear | 2013 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
SSID | ssj0025440 ssj0000963130 |
Score | 1.4434184 |
Snippet | A particle subject to a white noise external forcing moves according to a Langevin process. Consider now that the particle is reflected at a boundary which... |
SourceID | springer |
SourceType | Publisher |
StartPage | 245 |
SubjectTerms | Excursion measure Langevin process Recurrent extension Second order reflection Stochastic differential equation transform |
Title | Langevin Process Reflected on a Partially Elastic Boundary II |
URI | http://link.springer.com/10.1007/978-3-319-00321-4_9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKWYCBt3jLAxNSKqd-ZgVataAihCjqFtmOw0CVSm06lF_P2WkyAEtHS_FF_mz5Xv7uELrtkiyTlsaRgR0HB4W5SAmnImJzxaw1ubA-oD96EYMxe5rwSQvxmgsTXrvXKclwU9dktyqPHzg3hHZBbppsoW0qQcP7GpKPz01oBaxyGqzitd_FGauYKJJHilHf6YmCHC-GqKoITzOWTWWif__4J18a1FB_H33UC6hen3x1lqXp2O9ftR03XuEB2vOcB-zJCIDzIWq54gjtjpqSrotj5NnSn6BFC7zmFuA3l_uYv8vwrMAav_pDqKfTFe6BRQ6T8H1o2TRf4eHwBI37vfeHQbTuvRAt4kSWkbTKgKvjSEKddrFxQkgXx7qrdU6o4Uw4IxyNrYO9TlQGnqM0XOpcU0N5ktFT1C5mhTtD2BEBZmke64RSZrgwVrKMKphH8gRG5-iuhiP1nsUirUspAyApTQGQNACSAiAXm3x8iXa6oXuFj5hcoXY5X7prsCFKcxNOzA_Le7R4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b8MgEEZpOvQx9K2-y9CpkiPbYLDXPqKkeaiqkiobAow7NHKkxBnSX98Dxx7aLhmRzFl8ILg7-L5D6D7005RrEngKZhwCFGq8mJnY83UWU61VxrRN6A-GrDOmr5No0kBRxYVxr92rK0m3U1dkt_Ie33FufBKCXZFsoW0aQnxiNSSfe3VqBbxy4rziddwVUVoyUXjkxZTYSk8E7FgzflyK8NRtXisT_fvHP_el7hhqH6CPagDl65Ov1rJQLf39S9tx4xEeon3LecCWjAA4H6GGyY_R3qCWdF2cIMuW_oRTNMdrbgF-N5nN-ZsUz3Is8ZtdhHI6XeEX8MihE350JZvmK9ztnqJx-2X01PHWtRe8RZDwwuM6VhDqGD8hRppAGca4CQIZSpn5REWUGcUMCbSBuU7iFCJHriIuM0kUiZKUnKFmPsvNOcLGZ-CWZoFMCKEqYkpzmpIY-vlZAq0L9FDBIWxksRCVlDIAIogAQIQDRAAgl5t8fId2OqNBX_S7w94V2g1dJQubPblGzWK-NDfgTxTq1q2eH0nUt1c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagSAgYeIs3HpiQ0jqxYycrtFVLH6oQldgi23EYqFLUpEP59ZyTJgOwIEZLsS1_Oeme3x1Cdx6JY6Gp6yj44-CgMOME3AQO0UnAtFYJ1zagPxrz3pQ9vfpVNWFWVbtXKcmS02C7NKV56yNOqqx-q8zpF_wbQj24Iwo30RYDZWmr-obtQR1mAQudFhby2gfzGStZKcJ3Akbt1CcK59hjSFA25KnXou5S9OuNP3KnhUrq7iNVPaasRHlvLnPV1J_f-jz-67UHaM9yIbAlKQD-h2jDpEdod1S3es2OkWVRv4F2TfGac4CfTWJzASbG8xRLPLHCKWezFe6ApQ6b8EMxymmxwv3-CZp2Oy-PPWc9k8HJ3FDkjtCBAhfIkJAaaVxlOBfGdaUnZUKo8hk3ihvqagMyEAYxeJRC-UImkirqhzE9RY10npozhA3hYK4mrgwpZcrnSgsW0wD2kSSE1Tm6r6CJrMeRRVWLZQAkohEAEhWARADIxV8-vkXbk3Y3GvbHg0u04xUDLmxQ5Qo18sXSXIOZkaubQpC-AJ_NwDI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=S%C3%A9minaire+de+Probabilit%C3%A9s+XLV&rft.au=Jacob%2C+Emmanuel&rft.atitle=Langevin+Process+Reflected+on+a+Partially+Elastic+Boundary+II&rft.series=Lecture+Notes+in+Mathematics&rft.date=2013-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319003207&rft.issn=0075-8434&rft.eissn=1617-9692&rft.spage=245&rft.epage=275&rft_id=info:doi/10.1007%2F978-3-319-00321-4_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0075-8434&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0075-8434&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0075-8434&client=summon |