Improved Kalman filtering through moment-based innovation gain strategies
This paper presents the moment-based Kalman filter (MKF), a novel sub-optimal estimation strategy designed to enhance robustness in systems subject to modeling uncertainties or external disturbances. Unlike the conventional Kalman filter, the MKF incorporates higher-order statistical moments of the...
Saved in:
Published in | Proceedings of SPIE, the international society for optical engineering Vol. 13483; pp. 134830E - 134830E-8 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
SPIE
21.05.2025
|
Online Access | Get full text |
ISBN | 9781510687554 1510687556 |
ISSN | 0277-786X |
DOI | 10.1117/12.3053779 |
Cover
Abstract | This paper presents the moment-based Kalman filter (MKF), a novel sub-optimal estimation strategy designed to enhance robustness in systems subject to modeling uncertainties or external disturbances. Unlike the conventional Kalman filter, the MKF incorporates higher-order statistical moments of the innovation to inform its gain calculation, allowing for a more nuanced representation of the underlying noise and measurement error characteristics. The filter is structured as a predictor-corrector algorithm and maintains computational efficiency while offering improved adaptability in uncertain environments. A mathematical formulation of the MKF is provided, along with a proof of stability. Performance is evaluated using a simulated electrohydrostatic actuator (EHA) model undergoing a leakage fault. Results from the computational study demonstrate that the MKF provides more accurate state estimates than the standard Kalman filter, particularly under faulty or uncertain operating conditions. |
---|---|
AbstractList | This paper presents the moment-based Kalman filter (MKF), a novel sub-optimal estimation strategy designed to enhance robustness in systems subject to modeling uncertainties or external disturbances. Unlike the conventional Kalman filter, the MKF incorporates higher-order statistical moments of the innovation to inform its gain calculation, allowing for a more nuanced representation of the underlying noise and measurement error characteristics. The filter is structured as a predictor-corrector algorithm and maintains computational efficiency while offering improved adaptability in uncertain environments. A mathematical formulation of the MKF is provided, along with a proof of stability. Performance is evaluated using a simulated electrohydrostatic actuator (EHA) model undergoing a leakage fault. Results from the computational study demonstrate that the MKF provides more accurate state estimates than the standard Kalman filter, particularly under faulty or uncertain operating conditions. |
Author | Hilal, Waleed Yawney, John McCafferty-Leroux, Alex Gadsden, Stephen A. |
Author_xml | – sequence: 1 givenname: Waleed surname: Hilal fullname: Hilal, Waleed organization: McMaster Univ. (Canada) – sequence: 2 givenname: Alex surname: McCafferty-Leroux fullname: McCafferty-Leroux, Alex organization: McMaster Univ. (Canada) – sequence: 3 givenname: Stephen A. surname: Gadsden fullname: Gadsden, Stephen A. organization: McMaster Univ. (Canada) – sequence: 4 givenname: John surname: Yawney fullname: Yawney, John organization: McMaster Univ. (Canada) |
BookMark | eNotkF1LwzAYhQNOcJu78Rf0WujMmzRN3ksZfhQH3ih4V5Il6SJtOpq432_F3Zxzczg8PCuyiGN0hNwB3QKAfAC25VRwKfGKbFAqEEBrJYWoFmRJmZSlVPXXDVml9E0pU0LikjTNcJrGs7PFm-4HHQsf-uymELsiH6fxpzsWwzi4mEuj07wKMY5nncMYi06HWKQ86ey64NItufa6T25z6TX5fH762L2W-_eXZve4LxMgy2WtACpuGVR2Do8WUSJyU1HNLGpmDqZStcSaIrdeIlc1Guu0Nt4y4T1fk_v_33QKrp3hD87ZmTe1QNs_ES2w9iKC_wJhMlJd |
ContentType | Conference Proceeding |
Copyright | COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. |
Copyright_xml | – notice: COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. |
DOI | 10.1117/12.3053779 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
Editor | Chen, Genshe Pham, Khanh D. |
Editor_xml | – sequence: 1 givenname: Genshe surname: Chen fullname: Chen, Genshe organization: Intelligent Fusion Technology, Inc. (United States) – sequence: 2 givenname: Khanh D. surname: Pham fullname: Pham, Khanh D. organization: Air Force Research Lab. (United States) |
EndPage | 134830E-8 |
ExternalDocumentID | 10_1117_12_3053779 |
GroupedDBID | 29O 4.4 5SJ ACGFS ADMLS ALMA_UNASSIGNED_HOLDINGS EBS F5P FQ0 R.2 RNS RSJ SPBNH |
ID | FETCH-LOGICAL-s192t-681143d214dd21f9d997993b40a2d9a2bcb486796093df793869bdeaabfd25ff3 |
ISBN | 9781510687554 1510687556 |
ISSN | 0277-786X |
IngestDate | Sat May 24 13:25:32 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s192t-681143d214dd21f9d997993b40a2d9a2bcb486796093df793869bdeaabfd25ff3 |
Notes | Conference Location: Orlando, Florida, United States Conference Date: 2025-04-13|2025-04-17 |
ParticipantIDs | spie_proceedings_10_1117_12_3053779 |
PublicationCentury | 2000 |
PublicationDate | 20250521 |
PublicationDateYYYYMMDD | 2025-05-21 |
PublicationDate_xml | – month: 5 year: 2025 text: 20250521 day: 21 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings of SPIE, the international society for optical engineering |
PublicationYear | 2025 |
Publisher | SPIE |
Publisher_xml | – name: SPIE |
SSID | ssj0028579 |
Score | 2.2914433 |
Snippet | This paper presents the moment-based Kalman filter (MKF), a novel sub-optimal estimation strategy designed to enhance robustness in systems subject to modeling... |
SourceID | spie |
SourceType | Publisher |
StartPage | 134830E |
Title | Improved Kalman filtering through moment-based innovation gain strategies |
URI | http://www.dx.doi.org/10.1117/12.3053779 |
Volume | 13483 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaW5dKe-gDRpyy1t5WXxMnmcUSUClpASIDKbWWvx2glWFATBO3P6S_tTOzEge6hcIl2rcibeL4dz4xnvmHss4o1escqEjGYSKQpgCgLA0JqAG1xC9cxFQofHGa7p-m3s8nZYPCnl7V0U-vx7PfSupKnSBXHUK5UJfsIyXaT4gB-RvniFSWM1wfG79J95qgbbPIxjo_2mtRGMiXn9wJ9VS818-raRa8hEBH2YeOCDGiFflcXFN63czpOdzVVrqPPJXE21IK2P-Jtapuqjs7VfDGq6pZ6IsS0L5qeAqMfuBX5SqomDritqDVL_UvsA05811bbdAlBylReJ_pMtNHWuNNR6tZnqXWpxD5yISd06C5D5IJW5Z43i8ZHlKH_5FilvRKkI-a8aLodBo2dpEXS07rN92int4n7kQYJy3aJhmdAjhNis3HNbB6wbjvfKJ_GcupvWmEr-IhDtrr15WD_uHPqi4njc2yfk4oH2_fIPKdY916eHxcn3gy_TjmE13PomTUnL9haKPjkAU0v2QAWr9jzHlfla7bXIoM7ZPAOGdwjg_eRwQMyOCGDB2SssdOvOyfbu8L34RAV2v-1yAp0mhMj49TgxZampLPgRKeRkqZUUs-0422MysRYVPhFVmoDSmlr5MTaZJ0NF1cL2GBcxqBza9HqLiC1uHRlNotnEOV5giMG3rBPtBbT8K-qpv-K4u1_3fWOPQuoe8-G9c8b-IAWZK0_eiH-BUAdbbM |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+SPIE%2C+the+international+society+for+optical+engineering&rft.atitle=Improved+Kalman+filtering+through+moment-based+innovation+gain+strategies&rft.au=Hilal%2C+Waleed&rft.au=McCafferty-Leroux%2C+Alex&rft.au=Gadsden%2C+Stephen+A.&rft.au=Yawney%2C+John&rft.date=2025-05-21&rft.pub=SPIE&rft.isbn=9781510687554&rft.issn=0277-786X&rft.volume=13483&rft.spage=134830E&rft.epage=134830E-8&rft_id=info:doi/10.1117%2F12.3053779&rft.externalDocID=10_1117_12_3053779 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-786X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-786X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-786X&client=summon |