Improved Kalman filtering through moment-based innovation gain strategies

This paper presents the moment-based Kalman filter (MKF), a novel sub-optimal estimation strategy designed to enhance robustness in systems subject to modeling uncertainties or external disturbances. Unlike the conventional Kalman filter, the MKF incorporates higher-order statistical moments of the...

Full description

Saved in:
Bibliographic Details
Published inProceedings of SPIE, the international society for optical engineering Vol. 13483; pp. 134830E - 134830E-8
Main Authors Hilal, Waleed, McCafferty-Leroux, Alex, Gadsden, Stephen A., Yawney, John
Format Conference Proceeding
LanguageEnglish
Published SPIE 21.05.2025
Online AccessGet full text
ISBN9781510687554
1510687556
ISSN0277-786X
DOI10.1117/12.3053779

Cover

Abstract This paper presents the moment-based Kalman filter (MKF), a novel sub-optimal estimation strategy designed to enhance robustness in systems subject to modeling uncertainties or external disturbances. Unlike the conventional Kalman filter, the MKF incorporates higher-order statistical moments of the innovation to inform its gain calculation, allowing for a more nuanced representation of the underlying noise and measurement error characteristics. The filter is structured as a predictor-corrector algorithm and maintains computational efficiency while offering improved adaptability in uncertain environments. A mathematical formulation of the MKF is provided, along with a proof of stability. Performance is evaluated using a simulated electrohydrostatic actuator (EHA) model undergoing a leakage fault. Results from the computational study demonstrate that the MKF provides more accurate state estimates than the standard Kalman filter, particularly under faulty or uncertain operating conditions.
AbstractList This paper presents the moment-based Kalman filter (MKF), a novel sub-optimal estimation strategy designed to enhance robustness in systems subject to modeling uncertainties or external disturbances. Unlike the conventional Kalman filter, the MKF incorporates higher-order statistical moments of the innovation to inform its gain calculation, allowing for a more nuanced representation of the underlying noise and measurement error characteristics. The filter is structured as a predictor-corrector algorithm and maintains computational efficiency while offering improved adaptability in uncertain environments. A mathematical formulation of the MKF is provided, along with a proof of stability. Performance is evaluated using a simulated electrohydrostatic actuator (EHA) model undergoing a leakage fault. Results from the computational study demonstrate that the MKF provides more accurate state estimates than the standard Kalman filter, particularly under faulty or uncertain operating conditions.
Author Hilal, Waleed
Yawney, John
McCafferty-Leroux, Alex
Gadsden, Stephen A.
Author_xml – sequence: 1
  givenname: Waleed
  surname: Hilal
  fullname: Hilal, Waleed
  organization: McMaster Univ. (Canada)
– sequence: 2
  givenname: Alex
  surname: McCafferty-Leroux
  fullname: McCafferty-Leroux, Alex
  organization: McMaster Univ. (Canada)
– sequence: 3
  givenname: Stephen A.
  surname: Gadsden
  fullname: Gadsden, Stephen A.
  organization: McMaster Univ. (Canada)
– sequence: 4
  givenname: John
  surname: Yawney
  fullname: Yawney, John
  organization: McMaster Univ. (Canada)
BookMark eNotkF1LwzAYhQNOcJu78Rf0WujMmzRN3ksZfhQH3ih4V5Il6SJtOpq432_F3Zxzczg8PCuyiGN0hNwB3QKAfAC25VRwKfGKbFAqEEBrJYWoFmRJmZSlVPXXDVml9E0pU0LikjTNcJrGs7PFm-4HHQsf-uymELsiH6fxpzsWwzi4mEuj07wKMY5nncMYi06HWKQ86ey64NItufa6T25z6TX5fH762L2W-_eXZve4LxMgy2WtACpuGVR2Do8WUSJyU1HNLGpmDqZStcSaIrdeIlc1Guu0Nt4y4T1fk_v_33QKrp3hD87ZmTe1QNs_ES2w9iKC_wJhMlJd
ContentType Conference Proceeding
Copyright COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
Copyright_xml – notice: COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
DOI 10.1117/12.3053779
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Editor Chen, Genshe
Pham, Khanh D.
Editor_xml – sequence: 1
  givenname: Genshe
  surname: Chen
  fullname: Chen, Genshe
  organization: Intelligent Fusion Technology, Inc. (United States)
– sequence: 2
  givenname: Khanh D.
  surname: Pham
  fullname: Pham, Khanh D.
  organization: Air Force Research Lab. (United States)
EndPage 134830E-8
ExternalDocumentID 10_1117_12_3053779
GroupedDBID 29O
4.4
5SJ
ACGFS
ADMLS
ALMA_UNASSIGNED_HOLDINGS
EBS
F5P
FQ0
R.2
RNS
RSJ
SPBNH
ID FETCH-LOGICAL-s192t-681143d214dd21f9d997993b40a2d9a2bcb486796093df793869bdeaabfd25ff3
ISBN 9781510687554
1510687556
ISSN 0277-786X
IngestDate Sat May 24 13:25:32 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s192t-681143d214dd21f9d997993b40a2d9a2bcb486796093df793869bdeaabfd25ff3
Notes Conference Location: Orlando, Florida, United States
Conference Date: 2025-04-13|2025-04-17
ParticipantIDs spie_proceedings_10_1117_12_3053779
PublicationCentury 2000
PublicationDate 20250521
PublicationDateYYYYMMDD 2025-05-21
PublicationDate_xml – month: 5
  year: 2025
  text: 20250521
  day: 21
PublicationDecade 2020
PublicationTitle Proceedings of SPIE, the international society for optical engineering
PublicationYear 2025
Publisher SPIE
Publisher_xml – name: SPIE
SSID ssj0028579
Score 2.2914433
Snippet This paper presents the moment-based Kalman filter (MKF), a novel sub-optimal estimation strategy designed to enhance robustness in systems subject to modeling...
SourceID spie
SourceType Publisher
StartPage 134830E
Title Improved Kalman filtering through moment-based innovation gain strategies
URI http://www.dx.doi.org/10.1117/12.3053779
Volume 13483
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaW5dKe-gDRpyy1t5WXxMnmcUSUClpASIDKbWWvx2glWFATBO3P6S_tTOzEge6hcIl2rcibeL4dz4xnvmHss4o1escqEjGYSKQpgCgLA0JqAG1xC9cxFQofHGa7p-m3s8nZYPCnl7V0U-vx7PfSupKnSBXHUK5UJfsIyXaT4gB-RvniFSWM1wfG79J95qgbbPIxjo_2mtRGMiXn9wJ9VS818-raRa8hEBH2YeOCDGiFflcXFN63czpOdzVVrqPPJXE21IK2P-Jtapuqjs7VfDGq6pZ6IsS0L5qeAqMfuBX5SqomDritqDVL_UvsA05811bbdAlBylReJ_pMtNHWuNNR6tZnqXWpxD5yISd06C5D5IJW5Z43i8ZHlKH_5FilvRKkI-a8aLodBo2dpEXS07rN92int4n7kQYJy3aJhmdAjhNis3HNbB6wbjvfKJ_GcupvWmEr-IhDtrr15WD_uHPqi4njc2yfk4oH2_fIPKdY916eHxcn3gy_TjmE13PomTUnL9haKPjkAU0v2QAWr9jzHlfla7bXIoM7ZPAOGdwjg_eRwQMyOCGDB2SssdOvOyfbu8L34RAV2v-1yAp0mhMj49TgxZampLPgRKeRkqZUUs-0422MysRYVPhFVmoDSmlr5MTaZJ0NF1cL2GBcxqBza9HqLiC1uHRlNotnEOV5giMG3rBPtBbT8K-qpv-K4u1_3fWOPQuoe8-G9c8b-IAWZK0_eiH-BUAdbbM
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+SPIE%2C+the+international+society+for+optical+engineering&rft.atitle=Improved+Kalman+filtering+through+moment-based+innovation+gain+strategies&rft.au=Hilal%2C+Waleed&rft.au=McCafferty-Leroux%2C+Alex&rft.au=Gadsden%2C+Stephen+A.&rft.au=Yawney%2C+John&rft.date=2025-05-21&rft.pub=SPIE&rft.isbn=9781510687554&rft.issn=0277-786X&rft.volume=13483&rft.spage=134830E&rft.epage=134830E-8&rft_id=info:doi/10.1117%2F12.3053779&rft.externalDocID=10_1117_12_3053779
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-786X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-786X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-786X&client=summon