An Extended Study of the Discriminant Random Forest

Classification technologies have become increasingly vital to information analysis systems that rely upon collected data to make predictions or informed decisions. Many approaches have been developed, but one of the most successful in recent times is the random forest. The discriminant random forest...

Full description

Saved in:
Bibliographic Details
Published inData Mining pp. 123 - 146
Main Authors Lemmond, Tracy D., Chen, Barry Y., Hatch, Andrew O., Hanley, William G.
Format Book Chapter
LanguageEnglish
Published Boston, MA Springer US 2010
SeriesAnnals of Information Systems
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Classification technologies have become increasingly vital to information analysis systems that rely upon collected data to make predictions or informed decisions. Many approaches have been developed, but one of the most successful in recent times is the random forest. The discriminant random forest is a novel extension of the random forest classification methodology that leverages linear discriminant analysis to performmultivariate node splitting during tree construction.An extended study of the discriminant random forest is presented which shows that its individual classifiers are stronger and more diverse than their random forest counterparts, yielding statistically significant reductions in classification error of up to 79.5%. Moreover, empirical tests suggest that this approach is computationally less costly with respect to both memory and efficiency. Further enhancements of the methodology are investigated that exhibit significant performance improvements and greater stability at low false alarm rates.
AbstractList Classification technologies have become increasingly vital to information analysis systems that rely upon collected data to make predictions or informed decisions. Many approaches have been developed, but one of the most successful in recent times is the random forest. The discriminant random forest is a novel extension of the random forest classification methodology that leverages linear discriminant analysis to performmultivariate node splitting during tree construction.An extended study of the discriminant random forest is presented which shows that its individual classifiers are stronger and more diverse than their random forest counterparts, yielding statistically significant reductions in classification error of up to 79.5%. Moreover, empirical tests suggest that this approach is computationally less costly with respect to both memory and efficiency. Further enhancements of the methodology are investigated that exhibit significant performance improvements and greater stability at low false alarm rates.
Author Chen, Barry Y.
Hatch, Andrew O.
Lemmond, Tracy D.
Hanley, William G.
Author_xml – sequence: 1
  givenname: Tracy D.
  surname: Lemmond
  fullname: Lemmond, Tracy D.
  email: lemmond1@llnl.gov
– sequence: 2
  givenname: Barry Y.
  surname: Chen
  fullname: Chen, Barry Y.
  email: chen52@llnl.gov
– sequence: 3
  givenname: Andrew O.
  surname: Hatch
  fullname: Hatch, Andrew O.
  email: hatch8@llnl.gov
– sequence: 4
  givenname: William G.
  surname: Hanley
  fullname: Hanley, William G.
  email: hanley3@llnl.gov
BookMark eNpNkN1KxDAQhaOu4Lr2CbzJC0QzSZqkl8u6q8KC4M91SJupVt1Emgr69tuiiHMz8B04cL5TMospIiHnwC-Ac3NZGcuAKQUVA2E5404fkGKkMLEJ8UMyh0oqJgXIo_-ZqdTsLxNwQoqcX_l4SpZCw5zIZaTrrwFjwEAfhs_wTVNLhxekV11u-m7XRR8Heu9jSDu6ST3m4Ywct_49Y_H7F-Rps35c3bDt3fXtarllGYwYWNm23JYaGoVaBKNqAOGDrX1ojVah0Rw4lkYhtga9lyEYa7zAykrwEhq5IPDTmz_6Lj5j7-qU3rID7iYxbpzpwE1D3WTBjWLkHt4ZUds
ContentType Book Chapter
Copyright Springer Science+Business Media, LLC 2010
Copyright_xml – notice: Springer Science+Business Media, LLC 2010
DOI 10.1007/978-1-4419-1280-0_6
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Business
EISBN 9781441912800
1441912800
EISSN 1934-3213
Editor Crone, Sven F.
Stahlbock, Robert
Lessmann, Stefan
Editor_xml – sequence: 1
  givenname: Robert
  surname: Stahlbock
  fullname: Stahlbock, Robert
  email: stahlbock@econ.uni-hamburg.de
– sequence: 2
  givenname: Sven F.
  surname: Crone
  fullname: Crone, Sven F.
  email: sven.f.crone@crone.de
– sequence: 3
  givenname: Stefan
  surname: Lessmann
  fullname: Lessmann, Stefan
  email: lessmann@econ.uni-hamburg.de
EndPage 146
GroupedDBID 23M
ALMA_UNASSIGNED_HOLDINGS
RSU
ID FETCH-LOGICAL-s172t-5ff08561c4e62d74b112ad8badf764dc6010e574eef7eaa3dd787a2e9831a31c3
ISBN 9781441912794
1441912797
ISSN 1934-3221
IngestDate Wed Nov 06 06:46:30 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s172t-5ff08561c4e62d74b112ad8badf764dc6010e574eef7eaa3dd787a2e9831a31c3
OpenAccessLink https://www.osti.gov/biblio/1213646
PageCount 24
ParticipantIDs springer_books_10_1007_978_1_4419_1280_0_6
PublicationCentury 2000
PublicationDate 2010
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – year: 2010
  text: 2010
PublicationDecade 2010
PublicationPlace Boston, MA
PublicationPlace_xml – name: Boston, MA
PublicationSeriesTitle Annals of Information Systems
PublicationSeriesTitleAlternate Annals Information Systems
PublicationSubtitle Special Issue in Annals of Information Systems
PublicationTitle Data Mining
PublicationYear 2010
Publisher Springer US
Publisher_xml – name: Springer US
SSID ssj0000435261
ssj0000547338
Score 1.396195
Snippet Classification technologies have become increasingly vital to information analysis systems that rely upon collected data to make predictions or informed...
SourceID springer
SourceType Publisher
StartPage 123
SubjectTerms False Alarm Rate
Linear Discriminant Analysis
Node Splitting
Random Forest
Split Dimension
Title An Extended Study of the Discriminant Random Forest
URI http://link.springer.com/10.1007/978-1-4419-1280-0_6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfYkBDiAAzQPgD5wInIVR27tnMsrDBNDCS0oXGKbMeROJBKbTiUv57nryRsXMYlat02dt8v_vn5-X0g9Eb5lOhMCaJMNSdclpwoLRuiqVJsboWWrbdDXnwWZ1f8_HpxPbo1h-iS3szs73_GlfwPqtAGuPoo2TsgO9wUGuA14AtXQBiuN5Tfv82s0ZdF97q4CPUdRq8a33fADNYguytOZ-PxfeSXd3qz2RXfZyPz9LEYVPRsLL5MPumSPTvZZIqPs-kDtuyKVbKgB2_EXXY3OP3hqSi62BRfddesfxa-Amg6x_KScdtJ5uYUERWpa5JAPdkigkvb1BaRbZFD9sS0TfWbtoqWMpYzTkxbMU6ATeKv3bSNsgmj0hiOnBbnZK-8xfujqwfsiKEzAssujK4We2hPVsB895er80_fBuvbnPu6AHR870swh7Lnw7hCFGAat8zJwfL_GPJXxRTFNzq9daoelJXLJ-iRD2DBPrIEJs1TdM91B-hBjnA4QI9zJQ-ciP0ZYssOZzBxABOvWwxg4imYOIKJI5jP0dWH1eX7M5LKaZAtaKk9WbQt6NeCWu5E2UhuQNXWjTK6aaXgjfVbc7eQ3LlWOq1Z0wCZ69JVilHNqGUv0H637twhwkJW2vjERLZacGqNodKISqmW2xKmuztCb7MAaj9BtnXOjg3SqmntpVV7adUgreO7fPkEPRwfvJdov9_8cq9ALezN64TxH9YlUt8
link.rule.ids 782,783,787,796,27937
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Data+Mining&rft.au=Lemmond%2C+Tracy+D.&rft.au=Chen%2C+Barry+Y.&rft.au=Hatch%2C+Andrew+O.&rft.au=Hanley%2C+William+G.&rft.atitle=An+Extended+Study+of+the+Discriminant+Random+Forest&rft.series=Annals+of+Information+Systems&rft.date=2010-01-01&rft.pub=Springer+US&rft.isbn=9781441912794&rft.issn=1934-3221&rft.eissn=1934-3213&rft.spage=123&rft.epage=146&rft_id=info:doi/10.1007%2F978-1-4419-1280-0_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-3221&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-3221&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-3221&client=summon