Prediction of Clinical Disease with AI-Based Multiclass Classification Using Naïve Bayes and Random Forest Classifier
Healthcare practices include collecting all kinds of patient data which would help the doctor correctly diagnose the health condition of the patient. This data could be simple symptoms observed by the subject, initial diagnosis by a physician or a detailed test result from a lab. Thus, far this data...
Saved in:
Published in | Advances in Artificial Intelligence and Applied Cognitive Computing pp. 841 - 849 |
---|---|
Main Authors | , , , |
Format | Book Chapter |
Language | English |
Published |
Cham
Springer International Publishing
2021
|
Series | Transactions on Computational Science and Computational Intelligence |
Subjects | |
Online Access | Get full text |
ISBN | 9783030702953 3030702952 |
ISSN | 2569-7072 2569-7080 |
DOI | 10.1007/978-3-030-70296-0_63 |
Cover
Abstract | Healthcare practices include collecting all kinds of patient data which would help the doctor correctly diagnose the health condition of the patient. This data could be simple symptoms observed by the subject, initial diagnosis by a physician or a detailed test result from a lab. Thus, far this data is only utilized for analysis by a doctor who then ascertains the disease using his/her personal medical expertise. The Artificial Intelligence has been used with Naive Bayes classification and Random Forest classification algorithm to classify disease datasets of heart disease, to check whether the patient is affected by that disease or not. A performance analysis of the disease data for both algorithms is calculated and compared. The results of the simulations show the effectiveness of the classification techniques on a dataset, as well as the nature and complexity of the data set used. |
---|---|
AbstractList | Healthcare practices include collecting all kinds of patient data which would help the doctor correctly diagnose the health condition of the patient. This data could be simple symptoms observed by the subject, initial diagnosis by a physician or a detailed test result from a lab. Thus, far this data is only utilized for analysis by a doctor who then ascertains the disease using his/her personal medical expertise. The Artificial Intelligence has been used with Naive Bayes classification and Random Forest classification algorithm to classify disease datasets of heart disease, to check whether the patient is affected by that disease or not. A performance analysis of the disease data for both algorithms is calculated and compared. The results of the simulations show the effectiveness of the classification techniques on a dataset, as well as the nature and complexity of the data set used. |
Author | Vimal, S. Kaliappan, M. Jackins, V. Lee, Mi Young |
Author_xml | – sequence: 1 givenname: V. surname: Jackins fullname: Jackins, V. – sequence: 2 givenname: S. surname: Vimal fullname: Vimal, S. – sequence: 3 givenname: M. surname: Kaliappan fullname: Kaliappan, M. – sequence: 4 givenname: Mi Young surname: Lee fullname: Lee, Mi Young email: miylee@sejong.ac.kr |
BookMark | eNpVUEtOwzAQNVAkSukNWPgChrGtxPayLRQqlY8QXVtOMgFDiFEcijgVh-BiuAUhsZnPm_dGM--QDNrQIiHHHE44gDo1SjPJQAJTIEzOwOZyh4wTLBO4xWCXDEWWm8TQsPdvlsnB30yJAzKO8QkAhOI6V3pI1rcdVr7sfWhpqOms8a0vXUPPfEQXkb77_pFOFmyamopevTW9LxsXY2Km6OtE3mpX0bcP9Np9fa6RTt0HRurait6lEF7oPHQY-z8Ndkdkv3ZNxPFvHpHV_Px-dsmWNxeL2WTJIhe6Z07VmHHFpXYlVnnuqsJwlypX58qlF7NSykKYMlMKtZEAqJzhgLKoKyWVHBHxsze-dulA7GwRwnO0HOzGXJucstKmRXZrpN2YK78BsMJrdw |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2021 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2021 |
DOI | 10.1007/978-3-030-70296-0_63 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9783030702960 3030702960 |
EISSN | 2569-7080 |
Editor | Ferens, Ken Olivas Varela, José Angel Tinetti, Fernando G. Arabnia, Hamid R. Kozerenko, Elena B. de la Fuente, David |
Editor_xml | – sequence: 1 givenname: Hamid R. surname: Arabnia fullname: Arabnia, Hamid R. email: hra@uga.edu – sequence: 2 givenname: Ken surname: Ferens fullname: Ferens, Ken email: ken.ferens@ad.umanitoba.ca – sequence: 3 givenname: David surname: de la Fuente fullname: de la Fuente, David email: david@uniovi.es – sequence: 4 givenname: Elena B. surname: Kozerenko fullname: Kozerenko, Elena B. email: elenakozerenko@yahoo.com – sequence: 5 givenname: José Angel surname: Olivas Varela fullname: Olivas Varela, José Angel email: joseangel.olivas@uclm.es – sequence: 6 givenname: Fernando G. surname: Tinetti fullname: Tinetti, Fernando G. email: fernando@info.unlp.edu.ar |
EndPage | 849 |
GroupedDBID | 38. AABBV AABLV ABLLD ABNDO ACWLQ AEJLV AEKFX AELOD AIYYB ALMA_UNASSIGNED_HOLDINGS BAHJK BBABE CZZ DBWEY I4C IEZ OCUHQ ORHYB SBO TPJZQ Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z84 Z85 Z87 Z88 |
ID | FETCH-LOGICAL-s128t-a7fe517138aced66adb91aed6af67a0305c33b29c577e89300e7a910e3bfd7373 |
ISBN | 9783030702953 3030702952 |
ISSN | 2569-7072 |
IngestDate | Tue Jul 29 20:17:14 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s128t-a7fe517138aced66adb91aed6af67a0305c33b29c577e89300e7a910e3bfd7373 |
PageCount | 9 |
ParticipantIDs | springer_books_10_1007_978_3_030_70296_0_63 |
PublicationCentury | 2000 |
PublicationDate | 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationSeriesTitle | Transactions on Computational Science and Computational Intelligence |
PublicationSeriesTitleAlternate | Transactions Computational Science Computational Intelligence |
PublicationSubtitle | Proceedings from ICAI’20 and ACC’20 |
PublicationTitle | Advances in Artificial Intelligence and Applied Cognitive Computing |
PublicationYear | 2021 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
RelatedPersons | Arabnia, Hamid |
RelatedPersons_xml | – sequence: 1 givenname: Hamid surname: Arabnia fullname: Arabnia, Hamid |
SSID | ssj0002718678 |
Score | 1.6122227 |
Snippet | Healthcare practices include collecting all kinds of patient data which would help the doctor correctly diagnose the health condition of the patient. This data... |
SourceID | springer |
SourceType | Publisher |
StartPage | 841 |
SubjectTerms | Artificial Intelligence Data mining techniques Diabetes Naïve Bayes classification Random Forest classification |
Title | Prediction of Clinical Disease with AI-Based Multiclass Classification Using Naïve Bayes and Random Forest Classifier |
URI | http://link.springer.com/10.1007/978-3-030-70296-0_63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECZsd2m79ImmL3DoJtCwSVmURsdNkKa1UbSJkU2gKBLIEDuwlQDtn-qP6B_rkSdKspMlXQSZskXq7jN5-ngPQj4lqbI8sZYVUnEW64lgWaYti3mhR1LKVKcuwHm-SE7O49OLyUWv3-t4Ld1UxVD_vjeu5H-0Cm2gVxcl-wDNNjeFBjgH_cIRNAzHPeN3l2ZF92Lcvff-rNONd_nBxBmdHJuOFQ925qxxFMJKDmHNqgPta955OQyNy8srXwwg-tk0fXWkyPU1cqbzprl25plfRn7u6KLw-8ZtBAWrdBbCMD_jthCywNMv7BA-lJEPBtbOnMdane6REJ_o2LBQflv_GB7hUP0ymF36BxzWV5ErMbqtmt_VPsdOC2aLCzJGcPjdERRAoEHD9ObutnulK8suPcLHe_RIoEf3CNaW49t5nxZ-CuQZ5i_GaRhswozJERYYGppuG9agqqf-FBN4BSsCE7HeWaC6PinQGXO9JWyUJ6JP-jKNB-TR9Oj027LhCbl0KQd9YcUwEBeiFAbKMYlUO_BOeOh9vdzZ8Pd21Nkz8tTF1lAX9AJyek56ZvWCPOnkxHxJblvI0LWlATK0hgx1kKEBMrSFDN2FDPWQoQv198-toR4uFBRMES4U4UJbuLwi58dHZ7MTVhcHYVswqSqmpDWTsRyLVGlTJokqi2ys4EzZRCq3jGkhCp7piZQGjPLRyEgFtrERhS2lkOI1GazWK_OG0ExonsUlvDhlPFamSKW1srRpWopE6sIckCjILHd_920ecn2DhHORQ2e5l3DuJPz2Qd9-Rx63qH1PBtXmxnwAM7cqPtZI-AcB3KW2 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advances+in+Artificial+Intelligence+and+Applied+Cognitive+Computing&rft.au=Jackins%2C+V.&rft.au=Vimal%2C+S.&rft.au=Kaliappan%2C+M.&rft.au=Lee%2C+Mi+Young&rft.atitle=Prediction+of+Clinical+Disease+with+AI-Based+Multiclass+Classification+Using+Na%C3%AFve+Bayes+and+Random+Forest+Classifier&rft.series=Transactions+on+Computational+Science+and+Computational+Intelligence&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030702953&rft.issn=2569-7072&rft.eissn=2569-7080&rft.spage=841&rft.epage=849&rft_id=info:doi/10.1007%2F978-3-030-70296-0_63 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2569-7072&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2569-7072&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2569-7072&client=summon |