Prediction of Clinical Disease with AI-Based Multiclass Classification Using Naïve Bayes and Random Forest Classifier

Healthcare practices include collecting all kinds of patient data which would help the doctor correctly diagnose the health condition of the patient. This data could be simple symptoms observed by the subject, initial diagnosis by a physician or a detailed test result from a lab. Thus, far this data...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Artificial Intelligence and Applied Cognitive Computing pp. 841 - 849
Main Authors Jackins, V., Vimal, S., Kaliappan, M., Lee, Mi Young
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing 2021
SeriesTransactions on Computational Science and Computational Intelligence
Subjects
Online AccessGet full text
ISBN9783030702953
3030702952
ISSN2569-7072
2569-7080
DOI10.1007/978-3-030-70296-0_63

Cover

Abstract Healthcare practices include collecting all kinds of patient data which would help the doctor correctly diagnose the health condition of the patient. This data could be simple symptoms observed by the subject, initial diagnosis by a physician or a detailed test result from a lab. Thus, far this data is only utilized for analysis by a doctor who then ascertains the disease using his/her personal medical expertise. The Artificial Intelligence has been used with Naive Bayes classification and Random Forest classification algorithm to classify disease datasets of heart disease, to check whether the patient is affected by that disease or not. A performance analysis of the disease data for both algorithms is calculated and compared. The results of the simulations show the effectiveness of the classification techniques on a dataset, as well as the nature and complexity of the data set used.
AbstractList Healthcare practices include collecting all kinds of patient data which would help the doctor correctly diagnose the health condition of the patient. This data could be simple symptoms observed by the subject, initial diagnosis by a physician or a detailed test result from a lab. Thus, far this data is only utilized for analysis by a doctor who then ascertains the disease using his/her personal medical expertise. The Artificial Intelligence has been used with Naive Bayes classification and Random Forest classification algorithm to classify disease datasets of heart disease, to check whether the patient is affected by that disease or not. A performance analysis of the disease data for both algorithms is calculated and compared. The results of the simulations show the effectiveness of the classification techniques on a dataset, as well as the nature and complexity of the data set used.
Author Vimal, S.
Kaliappan, M.
Jackins, V.
Lee, Mi Young
Author_xml – sequence: 1
  givenname: V.
  surname: Jackins
  fullname: Jackins, V.
– sequence: 2
  givenname: S.
  surname: Vimal
  fullname: Vimal, S.
– sequence: 3
  givenname: M.
  surname: Kaliappan
  fullname: Kaliappan, M.
– sequence: 4
  givenname: Mi Young
  surname: Lee
  fullname: Lee, Mi Young
  email: miylee@sejong.ac.kr
BookMark eNpVUEtOwzAQNVAkSukNWPgChrGtxPayLRQqlY8QXVtOMgFDiFEcijgVh-BiuAUhsZnPm_dGM--QDNrQIiHHHE44gDo1SjPJQAJTIEzOwOZyh4wTLBO4xWCXDEWWm8TQsPdvlsnB30yJAzKO8QkAhOI6V3pI1rcdVr7sfWhpqOms8a0vXUPPfEQXkb77_pFOFmyamopevTW9LxsXY2Km6OtE3mpX0bcP9Np9fa6RTt0HRurait6lEF7oPHQY-z8Ndkdkv3ZNxPFvHpHV_Px-dsmWNxeL2WTJIhe6Z07VmHHFpXYlVnnuqsJwlypX58qlF7NSykKYMlMKtZEAqJzhgLKoKyWVHBHxsze-dulA7GwRwnO0HOzGXJucstKmRXZrpN2YK78BsMJrdw
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DOI 10.1007/978-3-030-70296-0_63
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9783030702960
3030702960
EISSN 2569-7080
Editor Ferens, Ken
Olivas Varela, José Angel
Tinetti, Fernando G.
Arabnia, Hamid R.
Kozerenko, Elena B.
de la Fuente, David
Editor_xml – sequence: 1
  givenname: Hamid R.
  surname: Arabnia
  fullname: Arabnia, Hamid R.
  email: hra@uga.edu
– sequence: 2
  givenname: Ken
  surname: Ferens
  fullname: Ferens, Ken
  email: ken.ferens@ad.umanitoba.ca
– sequence: 3
  givenname: David
  surname: de la Fuente
  fullname: de la Fuente, David
  email: david@uniovi.es
– sequence: 4
  givenname: Elena B.
  surname: Kozerenko
  fullname: Kozerenko, Elena B.
  email: elenakozerenko@yahoo.com
– sequence: 5
  givenname: José Angel
  surname: Olivas Varela
  fullname: Olivas Varela, José Angel
  email: joseangel.olivas@uclm.es
– sequence: 6
  givenname: Fernando G.
  surname: Tinetti
  fullname: Tinetti, Fernando G.
  email: fernando@info.unlp.edu.ar
EndPage 849
GroupedDBID 38.
AABBV
AABLV
ABLLD
ABNDO
ACWLQ
AEJLV
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CZZ
DBWEY
I4C
IEZ
OCUHQ
ORHYB
SBO
TPJZQ
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z84
Z85
Z87
Z88
ID FETCH-LOGICAL-s128t-a7fe517138aced66adb91aed6af67a0305c33b29c577e89300e7a910e3bfd7373
ISBN 9783030702953
3030702952
ISSN 2569-7072
IngestDate Tue Jul 29 20:17:14 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s128t-a7fe517138aced66adb91aed6af67a0305c33b29c577e89300e7a910e3bfd7373
PageCount 9
ParticipantIDs springer_books_10_1007_978_3_030_70296_0_63
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSeriesTitle Transactions on Computational Science and Computational Intelligence
PublicationSeriesTitleAlternate Transactions Computational Science Computational Intelligence
PublicationSubtitle Proceedings from ICAI’20 and ACC’20
PublicationTitle Advances in Artificial Intelligence and Applied Cognitive Computing
PublicationYear 2021
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
RelatedPersons Arabnia, Hamid
RelatedPersons_xml – sequence: 1
  givenname: Hamid
  surname: Arabnia
  fullname: Arabnia, Hamid
SSID ssj0002718678
Score 1.6122227
Snippet Healthcare practices include collecting all kinds of patient data which would help the doctor correctly diagnose the health condition of the patient. This data...
SourceID springer
SourceType Publisher
StartPage 841
SubjectTerms Artificial Intelligence
Data mining techniques
Diabetes
Naïve Bayes classification
Random Forest classification
Title Prediction of Clinical Disease with AI-Based Multiclass Classification Using Naïve Bayes and Random Forest Classifier
URI http://link.springer.com/10.1007/978-3-030-70296-0_63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECZsd2m79ImmL3DoJtCwSVmURsdNkKa1UbSJkU2gKBLIEDuwlQDtn-qP6B_rkSdKspMlXQSZskXq7jN5-ngPQj4lqbI8sZYVUnEW64lgWaYti3mhR1LKVKcuwHm-SE7O49OLyUWv3-t4Ld1UxVD_vjeu5H-0Cm2gVxcl-wDNNjeFBjgH_cIRNAzHPeN3l2ZF92Lcvff-rNONd_nBxBmdHJuOFQ925qxxFMJKDmHNqgPta955OQyNy8srXwwg-tk0fXWkyPU1cqbzprl25plfRn7u6KLw-8ZtBAWrdBbCMD_jthCywNMv7BA-lJEPBtbOnMdane6REJ_o2LBQflv_GB7hUP0ymF36BxzWV5ErMbqtmt_VPsdOC2aLCzJGcPjdERRAoEHD9ObutnulK8suPcLHe_RIoEf3CNaW49t5nxZ-CuQZ5i_GaRhswozJERYYGppuG9agqqf-FBN4BSsCE7HeWaC6PinQGXO9JWyUJ6JP-jKNB-TR9Oj027LhCbl0KQd9YcUwEBeiFAbKMYlUO_BOeOh9vdzZ8Pd21Nkz8tTF1lAX9AJyek56ZvWCPOnkxHxJblvI0LWlATK0hgx1kKEBMrSFDN2FDPWQoQv198-toR4uFBRMES4U4UJbuLwi58dHZ7MTVhcHYVswqSqmpDWTsRyLVGlTJokqi2ys4EzZRCq3jGkhCp7piZQGjPLRyEgFtrERhS2lkOI1GazWK_OG0ExonsUlvDhlPFamSKW1srRpWopE6sIckCjILHd_920ecn2DhHORQ2e5l3DuJPz2Qd9-Rx63qH1PBtXmxnwAM7cqPtZI-AcB3KW2
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advances+in+Artificial+Intelligence+and+Applied+Cognitive+Computing&rft.au=Jackins%2C+V.&rft.au=Vimal%2C+S.&rft.au=Kaliappan%2C+M.&rft.au=Lee%2C+Mi+Young&rft.atitle=Prediction+of+Clinical+Disease+with+AI-Based+Multiclass+Classification+Using+Na%C3%AFve+Bayes+and+Random+Forest+Classifier&rft.series=Transactions+on+Computational+Science+and+Computational+Intelligence&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030702953&rft.issn=2569-7072&rft.eissn=2569-7080&rft.spage=841&rft.epage=849&rft_id=info:doi/10.1007%2F978-3-030-70296-0_63
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2569-7072&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2569-7072&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2569-7072&client=summon