Sliding Window Symbolic Regression for Detecting Changes of System Dynamics

In this chapter we discuss sliding window symbolic regression and its ability to systematically detect changing dynamics in data streams. The sliding window defines the portion of the data visible to the algorithm during training and is moved over the data. The window is moved regularly based on the...

Full description

Saved in:
Bibliographic Details
Published inGenetic Programming Theory and Practice XII pp. 91 - 107
Main Authors Winkler, Stephan M., Affenzeller, Michael, Kronberger, Gabriel, Kommenda, Michael, Burlacu, Bogdan, Wagner, Stefan
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing 05.06.2015
SeriesGenetic and Evolutionary Computation
Subjects
Online AccessGet full text
ISBN331916029X
9783319160290
ISSN1932-0167
DOI10.1007/978-3-319-16030-6_6

Cover

Abstract In this chapter we discuss sliding window symbolic regression and its ability to systematically detect changing dynamics in data streams. The sliding window defines the portion of the data visible to the algorithm during training and is moved over the data. The window is moved regularly based on the generations or on the current selection pressure when using offspring selection. The sliding window technique has the effect that population has to adapt to the constantly changing environmental conditions. In the empirical section of this chapter, we focus on detecting change points of analyzed systems’ dynamics. We show its effectiveness on various artificial data sets and discuss the results obtained when the sliding window moved in each generation and when it is moved only when a selection pressure threshold is reached. The results show that sliding window symbolic regression can be used to detect change points in systems dynamics for the considered data sets.
AbstractList In this chapter we discuss sliding window symbolic regression and its ability to systematically detect changing dynamics in data streams. The sliding window defines the portion of the data visible to the algorithm during training and is moved over the data. The window is moved regularly based on the generations or on the current selection pressure when using offspring selection. The sliding window technique has the effect that population has to adapt to the constantly changing environmental conditions. In the empirical section of this chapter, we focus on detecting change points of analyzed systems’ dynamics. We show its effectiveness on various artificial data sets and discuss the results obtained when the sliding window moved in each generation and when it is moved only when a selection pressure threshold is reached. The results show that sliding window symbolic regression can be used to detect change points in systems dynamics for the considered data sets.
Author Winkler, Stephan M.
Burlacu, Bogdan
Wagner, Stefan
Kronberger, Gabriel
Kommenda, Michael
Affenzeller, Michael
Author_xml – sequence: 1
  givenname: Stephan M.
  surname: Winkler
  fullname: Winkler, Stephan M.
  email: stephan.winkler@heuristiclab.com
– sequence: 2
  givenname: Michael
  surname: Affenzeller
  fullname: Affenzeller, Michael
– sequence: 3
  givenname: Gabriel
  surname: Kronberger
  fullname: Kronberger, Gabriel
– sequence: 4
  givenname: Michael
  surname: Kommenda
  fullname: Kommenda, Michael
– sequence: 5
  givenname: Bogdan
  surname: Burlacu
  fullname: Burlacu, Bogdan
– sequence: 6
  givenname: Stefan
  surname: Wagner
  fullname: Wagner, Stefan
BookMark eNo9kN1KAzEQhSNWsK19Am_2BaKZnW2SvZTWPywIVtG7kCazdbVNZLMgfXvTKp6b4RwOw-EbsUGIgRg7B3EBQqjLWmmOHKHmIAUKLo08YiPMwcHj8b8p67cBG0KNJRcg1SmbpPQhsqaVwhKG7GG5aX0b1sVrG3z8Lpa77SpuWlc80bqjlNoYiiZ2xZx6cv2-OHu3YU2piE0up562xXwX7LZ16YydNHaTaPJ3x-zl5vp5dscXj7f3s6sFT1CqnvsKlZxKDd5J67V2zUoCknTCg7WWJNm6Io2yJiEVgtUC0Sn0qFCT1jhm8Ps3fXV5EXVmFeNnMiDMHo_JeAyaDMAccJiMB38Any9Xjw
ContentType Book Chapter
Copyright Springer International Publishing Switzerland 2015
Copyright_xml – notice: Springer International Publishing Switzerland 2015
DOI 10.1007/978-3-319-16030-6_6
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 3319160303
9783319160306
Editor Riolo, Rick
Worzel, William P.
Kotanchek, Mark
Editor_xml – sequence: 1
  givenname: Rick
  surname: Riolo
  fullname: Riolo, Rick
  email: rlriolo@umich.edu
– sequence: 2
  givenname: William P.
  surname: Worzel
  fullname: Worzel, William P.
  email: billwzel@gmail.com
– sequence: 3
  givenname: Mark
  surname: Kotanchek
  fullname: Kotanchek, Mark
  email: mark@evolved-analytics.com
EndPage 107
GroupedDBID 0D6
0DA
20A
38.
AABBV
AAGZE
AAZAK
AAZUS
ABFTD
ABMNI
ACBPT
ACKNT
ACKTS
ACRRC
AEJLV
AEKFX
AETDV
AEZAY
ALMA_UNASSIGNED_HOLDINGS
APFYR
AZZ
BBABE
CZZ
I4C
IEZ
MYL
SBO
SFQCF
TMQGW
TPJZQ
TWXRB
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
ID FETCH-LOGICAL-s127t-d43765681dc6ad88cfb613e6c0d1aaae6ea94e8369e06731a8033c73d3738e883
ISBN 331916029X
9783319160290
ISSN 1932-0167
IngestDate Tue Jul 29 20:27:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s127t-d43765681dc6ad88cfb613e6c0d1aaae6ea94e8369e06731a8033c73d3738e883
PageCount 17
ParticipantIDs springer_books_10_1007_978_3_319_16030_6_6
PublicationCentury 2000
PublicationDate 20150605
PublicationDateYYYYMMDD 2015-06-05
PublicationDate_xml – month: 6
  year: 2015
  text: 20150605
  day: 5
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSeriesTitle Genetic and Evolutionary Computation
PublicationSeriesTitleAlternate Genetic,Evolutionary Computation
PublicationTitle Genetic Programming Theory and Practice XII
PublicationYear 2015
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
RelatedPersons Koza, John R.
Goldberg, David E.
RelatedPersons_xml – sequence: 1
  givenname: David E.
  surname: Goldberg
  fullname: Goldberg, David E.
– sequence: 2
  givenname: John R.
  surname: Koza
  fullname: Koza, John R.
SSID ssj0000547321
ssj0001524920
Score 1.8174525
Snippet In this chapter we discuss sliding window symbolic regression and its ability to systematically detect changing dynamics in data streams. The sliding window...
SourceID springer
SourceType Publisher
StartPage 91
SubjectTerms Self-adaptive sliding window techniques
Symbolic regression
System analysis
System dynamics
Title Sliding Window Symbolic Regression for Detecting Changes of System Dynamics
URI http://link.springer.com/10.1007/978-3-319-16030-6_6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l4QIcgAKC8tAeOBG5srP2en1ENFDK40ILuVn7clUJ21KTFrU_h1_KzO760YRLuViRncSb-ZzdmdnvmyHkjZZzw1SlAAGTRmkBMavkeRIxZWSuMiFjjgLnr9_44Ul6tMyWk8mfEWvpYq329fU_dSX_gyqcA1xRJXsLZPsvhRPwGvCFIyAMxw3n92aa9Sw0gUMBIlL9kWFVY8zvlfZBAeDlT7Plpz4x-hMCz6D8c-wu3KjZ7yGvKttc204aOObT44R83joqmL_4USoIsYeLbV1biO23PhfUJr_OnHQGbm_a37PvV7XCasQA7aln4Xqy44HFDQ3HQ3CSB0cy8RXVZwdXjaw7Yj7a1q56A-CvXVwGQyMJ0HeqGB65kNRIMke-yraSmhtp0SEzdyMKZjCNJDye-76jYSIHvzRCicVocvZtwcIyH5rtbq0gY9IICrywDTcE2CXfITu5SKfkzrvF0ZcffR4vxubNwQXyynSswRh7MoMfAkqKuiGGok_DkPtKWL7Y8cZNt_bnndtz_JDcRykMRY0KGOgRmdhmlzzoGoHQsC7sknujqpaPyeeAN_V40w5vOuBNAW_a400D3rStqMebdng_IScfFsfvD6PQsyNaJfN8HZkUViwsamc0l0YIXSlwGC3XsUmklJZbWaRWMF5YbJGUSBEzpnNmsMKWFYI9JdOmbewzQjXjfF5pcOkNJi0KoXmaFBUS_eOcm-w5edvZpsR_4arsSnCDIUtWgiFLZ8gSDLl3mze_IHeHh_Ilma7PL-wr8D3X6nWA_y-I3X8B
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Genetic+Programming+Theory+and+Practice+XII&rft.au=Winkler%2C+Stephan+M.&rft.au=Affenzeller%2C+Michael&rft.au=Kronberger%2C+Gabriel&rft.au=Kommenda%2C+Michael&rft.atitle=Sliding+Window+Symbolic+Regression+for+Detecting+Changes+of+System+Dynamics&rft.series=Genetic+and+Evolutionary+Computation&rft.date=2015-06-05&rft.pub=Springer+International+Publishing&rft.isbn=9783319160290&rft.issn=1932-0167&rft.spage=91&rft.epage=107&rft_id=info:doi/10.1007%2F978-3-319-16030-6_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-0167&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-0167&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-0167&client=summon