Sliding Window Symbolic Regression for Detecting Changes of System Dynamics
In this chapter we discuss sliding window symbolic regression and its ability to systematically detect changing dynamics in data streams. The sliding window defines the portion of the data visible to the algorithm during training and is moved over the data. The window is moved regularly based on the...
Saved in:
Published in | Genetic Programming Theory and Practice XII pp. 91 - 107 |
---|---|
Main Authors | , , , , , |
Format | Book Chapter |
Language | English |
Published |
Cham
Springer International Publishing
05.06.2015
|
Series | Genetic and Evolutionary Computation |
Subjects | |
Online Access | Get full text |
ISBN | 331916029X 9783319160290 |
ISSN | 1932-0167 |
DOI | 10.1007/978-3-319-16030-6_6 |
Cover
Abstract | In this chapter we discuss sliding window symbolic regression and its ability to systematically detect changing dynamics in data streams. The sliding window defines the portion of the data visible to the algorithm during training and is moved over the data. The window is moved regularly based on the generations or on the current selection pressure when using offspring selection. The sliding window technique has the effect that population has to adapt to the constantly changing environmental conditions.
In the empirical section of this chapter, we focus on detecting change points of analyzed systems’ dynamics. We show its effectiveness on various artificial data sets and discuss the results obtained when the sliding window moved in each generation and when it is moved only when a selection pressure threshold is reached. The results show that sliding window symbolic regression can be used to detect change points in systems dynamics for the considered data sets. |
---|---|
AbstractList | In this chapter we discuss sliding window symbolic regression and its ability to systematically detect changing dynamics in data streams. The sliding window defines the portion of the data visible to the algorithm during training and is moved over the data. The window is moved regularly based on the generations or on the current selection pressure when using offspring selection. The sliding window technique has the effect that population has to adapt to the constantly changing environmental conditions.
In the empirical section of this chapter, we focus on detecting change points of analyzed systems’ dynamics. We show its effectiveness on various artificial data sets and discuss the results obtained when the sliding window moved in each generation and when it is moved only when a selection pressure threshold is reached. The results show that sliding window symbolic regression can be used to detect change points in systems dynamics for the considered data sets. |
Author | Winkler, Stephan M. Burlacu, Bogdan Wagner, Stefan Kronberger, Gabriel Kommenda, Michael Affenzeller, Michael |
Author_xml | – sequence: 1 givenname: Stephan M. surname: Winkler fullname: Winkler, Stephan M. email: stephan.winkler@heuristiclab.com – sequence: 2 givenname: Michael surname: Affenzeller fullname: Affenzeller, Michael – sequence: 3 givenname: Gabriel surname: Kronberger fullname: Kronberger, Gabriel – sequence: 4 givenname: Michael surname: Kommenda fullname: Kommenda, Michael – sequence: 5 givenname: Bogdan surname: Burlacu fullname: Burlacu, Bogdan – sequence: 6 givenname: Stefan surname: Wagner fullname: Wagner, Stefan |
BookMark | eNo9kN1KAzEQhSNWsK19Am_2BaKZnW2SvZTWPywIVtG7kCazdbVNZLMgfXvTKp6b4RwOw-EbsUGIgRg7B3EBQqjLWmmOHKHmIAUKLo08YiPMwcHj8b8p67cBG0KNJRcg1SmbpPQhsqaVwhKG7GG5aX0b1sVrG3z8Lpa77SpuWlc80bqjlNoYiiZ2xZx6cv2-OHu3YU2piE0up562xXwX7LZ16YydNHaTaPJ3x-zl5vp5dscXj7f3s6sFT1CqnvsKlZxKDd5J67V2zUoCknTCg7WWJNm6Io2yJiEVgtUC0Sn0qFCT1jhm8Ps3fXV5EXVmFeNnMiDMHo_JeAyaDMAccJiMB38Any9Xjw |
ContentType | Book Chapter |
Copyright | Springer International Publishing Switzerland 2015 |
Copyright_xml | – notice: Springer International Publishing Switzerland 2015 |
DOI | 10.1007/978-3-319-16030-6_6 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISBN | 3319160303 9783319160306 |
Editor | Riolo, Rick Worzel, William P. Kotanchek, Mark |
Editor_xml | – sequence: 1 givenname: Rick surname: Riolo fullname: Riolo, Rick email: rlriolo@umich.edu – sequence: 2 givenname: William P. surname: Worzel fullname: Worzel, William P. email: billwzel@gmail.com – sequence: 3 givenname: Mark surname: Kotanchek fullname: Kotanchek, Mark email: mark@evolved-analytics.com |
EndPage | 107 |
GroupedDBID | 0D6 0DA 20A 38. AABBV AAGZE AAZAK AAZUS ABFTD ABMNI ACBPT ACKNT ACKTS ACRRC AEJLV AEKFX AETDV AEZAY ALMA_UNASSIGNED_HOLDINGS APFYR AZZ BBABE CZZ I4C IEZ MYL SBO SFQCF TMQGW TPJZQ TWXRB Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 |
ID | FETCH-LOGICAL-s127t-d43765681dc6ad88cfb613e6c0d1aaae6ea94e8369e06731a8033c73d3738e883 |
ISBN | 331916029X 9783319160290 |
ISSN | 1932-0167 |
IngestDate | Tue Jul 29 20:27:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s127t-d43765681dc6ad88cfb613e6c0d1aaae6ea94e8369e06731a8033c73d3738e883 |
PageCount | 17 |
ParticipantIDs | springer_books_10_1007_978_3_319_16030_6_6 |
PublicationCentury | 2000 |
PublicationDate | 20150605 |
PublicationDateYYYYMMDD | 2015-06-05 |
PublicationDate_xml | – month: 6 year: 2015 text: 20150605 day: 5 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationSeriesTitle | Genetic and Evolutionary Computation |
PublicationSeriesTitleAlternate | Genetic,Evolutionary Computation |
PublicationTitle | Genetic Programming Theory and Practice XII |
PublicationYear | 2015 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
RelatedPersons | Koza, John R. Goldberg, David E. |
RelatedPersons_xml | – sequence: 1 givenname: David E. surname: Goldberg fullname: Goldberg, David E. – sequence: 2 givenname: John R. surname: Koza fullname: Koza, John R. |
SSID | ssj0000547321 ssj0001524920 |
Score | 1.8174525 |
Snippet | In this chapter we discuss sliding window symbolic regression and its ability to systematically detect changing dynamics in data streams. The sliding window... |
SourceID | springer |
SourceType | Publisher |
StartPage | 91 |
SubjectTerms | Self-adaptive sliding window techniques Symbolic regression System analysis System dynamics |
Title | Sliding Window Symbolic Regression for Detecting Changes of System Dynamics |
URI | http://link.springer.com/10.1007/978-3-319-16030-6_6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l4QIcgAKC8tAeOBG5srP2en1ENFDK40ILuVn7clUJ21KTFrU_h1_KzO760YRLuViRncSb-ZzdmdnvmyHkjZZzw1SlAAGTRmkBMavkeRIxZWSuMiFjjgLnr9_44Ul6tMyWk8mfEWvpYq329fU_dSX_gyqcA1xRJXsLZPsvhRPwGvCFIyAMxw3n92aa9Sw0gUMBIlL9kWFVY8zvlfZBAeDlT7Plpz4x-hMCz6D8c-wu3KjZ7yGvKttc204aOObT44R83joqmL_4USoIsYeLbV1biO23PhfUJr_OnHQGbm_a37PvV7XCasQA7aln4Xqy44HFDQ3HQ3CSB0cy8RXVZwdXjaw7Yj7a1q56A-CvXVwGQyMJ0HeqGB65kNRIMke-yraSmhtp0SEzdyMKZjCNJDye-76jYSIHvzRCicVocvZtwcIyH5rtbq0gY9IICrywDTcE2CXfITu5SKfkzrvF0ZcffR4vxubNwQXyynSswRh7MoMfAkqKuiGGok_DkPtKWL7Y8cZNt_bnndtz_JDcRykMRY0KGOgRmdhmlzzoGoHQsC7sknujqpaPyeeAN_V40w5vOuBNAW_a400D3rStqMebdng_IScfFsfvD6PQsyNaJfN8HZkUViwsamc0l0YIXSlwGC3XsUmklJZbWaRWMF5YbJGUSBEzpnNmsMKWFYI9JdOmbewzQjXjfF5pcOkNJi0KoXmaFBUS_eOcm-w5edvZpsR_4arsSnCDIUtWgiFLZ8gSDLl3mze_IHeHh_Ilma7PL-wr8D3X6nWA_y-I3X8B |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Genetic+Programming+Theory+and+Practice+XII&rft.au=Winkler%2C+Stephan+M.&rft.au=Affenzeller%2C+Michael&rft.au=Kronberger%2C+Gabriel&rft.au=Kommenda%2C+Michael&rft.atitle=Sliding+Window+Symbolic+Regression+for+Detecting+Changes+of+System+Dynamics&rft.series=Genetic+and+Evolutionary+Computation&rft.date=2015-06-05&rft.pub=Springer+International+Publishing&rft.isbn=9783319160290&rft.issn=1932-0167&rft.spage=91&rft.epage=107&rft_id=info:doi/10.1007%2F978-3-319-16030-6_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-0167&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-0167&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-0167&client=summon |