Inheritable Epigenetics in Genetic Programming

Classical genetic programming solves problems by applying the Darwinian concepts of selection, survival and reproduction to a population of computer programs. Here we extend the biological analogy to incorporate epigenetic regulation through both learning and evolution. We begin the chapter with a d...

Full description

Saved in:
Bibliographic Details
Published inGenetic Programming Theory and Practice XII pp. 37 - 51
Main Authors La Cava, William, Spector, Lee
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing 05.06.2015
SeriesGenetic and Evolutionary Computation
Subjects
Online AccessGet full text
ISBN331916029X
9783319160290
ISSN1932-0167
DOI10.1007/978-3-319-16030-6_3

Cover

Abstract Classical genetic programming solves problems by applying the Darwinian concepts of selection, survival and reproduction to a population of computer programs. Here we extend the biological analogy to incorporate epigenetic regulation through both learning and evolution. We begin the chapter with a discussion of Darwinian, Lamarckian, and Baldwinian approaches to evolutionary computation and describe how recent findings in biology differ conceptually from the computational strategies that have been proposed. Using inheritable Lamarckian mechanisms as inspiration, we propose a system that allows for updating of individuals in the population during their lifetime while simultaneously preserving both genotypic and phenotypic traits during reproduction. The implementation is made simple through the use of syntax-free, developmental, linear genetic programming. The representation allows for arbitrarily-ordered genomes to be syntactically valid programs, thereby creating a genetic programming approach upon which quasi-uniform epigenetic updating and inheritance can easily be applied. Generational updates are made using an epigenetic hill climber (EHC), and the epigenetic properties of genes are inherited during crossover and mutation. The addition of epigenetics results in faster convergence, less bloat, and an improved ability to find exact solutions on a number of symbolic regression problems.
AbstractList Classical genetic programming solves problems by applying the Darwinian concepts of selection, survival and reproduction to a population of computer programs. Here we extend the biological analogy to incorporate epigenetic regulation through both learning and evolution. We begin the chapter with a discussion of Darwinian, Lamarckian, and Baldwinian approaches to evolutionary computation and describe how recent findings in biology differ conceptually from the computational strategies that have been proposed. Using inheritable Lamarckian mechanisms as inspiration, we propose a system that allows for updating of individuals in the population during their lifetime while simultaneously preserving both genotypic and phenotypic traits during reproduction. The implementation is made simple through the use of syntax-free, developmental, linear genetic programming. The representation allows for arbitrarily-ordered genomes to be syntactically valid programs, thereby creating a genetic programming approach upon which quasi-uniform epigenetic updating and inheritance can easily be applied. Generational updates are made using an epigenetic hill climber (EHC), and the epigenetic properties of genes are inherited during crossover and mutation. The addition of epigenetics results in faster convergence, less bloat, and an improved ability to find exact solutions on a number of symbolic regression problems.
Author La Cava, William
Spector, Lee
Author_xml – sequence: 1
  givenname: William
  surname: La Cava
  fullname: La Cava, William
  email: wlacava@umass.edu
– sequence: 2
  givenname: Lee
  surname: Spector
  fullname: Spector, Lee
BookMark eNo9kN1KAzEQhSNWsK19Am_2BVIzmTU_l1JqLRT0QsG7kMRkXW2zJdn3x9iKczNzBmYO55uRSRpSIOQW2BIYk3daKooUQVMQDBkVBi_IDOvipPHyX3D9PiFT0MgpAyGvyaKUL1brvpXIYUqW2_QZcj9atw_N-th3IYWx96XpU7M5z81LHrpsD4c-dTfkKtp9CYu_Pidvj-vX1RPdPW-2q4cdLcDlSBUGpkUbVKuQO-8BwVnPhLagZHQetBThI_pWS1AcovWRR8edhHolg8Q5gfPfcszVNmTjhuG7GGDml4CpBAyamtGcEptKAH8AnAJNHA
ContentType Book Chapter
Copyright Springer International Publishing Switzerland 2015
Copyright_xml – notice: Springer International Publishing Switzerland 2015
DOI 10.1007/978-3-319-16030-6_3
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 3319160303
9783319160306
Editor Riolo, Rick
Worzel, William P.
Kotanchek, Mark
Editor_xml – sequence: 1
  givenname: Rick
  surname: Riolo
  fullname: Riolo, Rick
  email: rlriolo@umich.edu
– sequence: 2
  givenname: William P.
  surname: Worzel
  fullname: Worzel, William P.
  email: billwzel@gmail.com
– sequence: 3
  givenname: Mark
  surname: Kotanchek
  fullname: Kotanchek, Mark
  email: mark@evolved-analytics.com
EndPage 51
GroupedDBID 0D6
0DA
20A
38.
AABBV
AAGZE
AAZAK
AAZUS
ABFTD
ABMNI
ACBPT
ACKNT
ACKTS
ACRRC
AEJLV
AEKFX
AETDV
AEZAY
ALMA_UNASSIGNED_HOLDINGS
APFYR
AZZ
BBABE
CZZ
I4C
IEZ
MYL
SBO
SFQCF
TMQGW
TPJZQ
TWXRB
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
ID FETCH-LOGICAL-s127t-83e0964e84832bcc131bac069a187fbc1976edfc4971821facf2fb2b719647e73
ISBN 331916029X
9783319160290
ISSN 1932-0167
IngestDate Tue Jul 29 20:27:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s127t-83e0964e84832bcc131bac069a187fbc1976edfc4971821facf2fb2b719647e73
PageCount 15
ParticipantIDs springer_books_10_1007_978_3_319_16030_6_3
PublicationCentury 2000
PublicationDate 20150605
PublicationDateYYYYMMDD 2015-06-05
PublicationDate_xml – month: 6
  year: 2015
  text: 20150605
  day: 5
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSeriesTitle Genetic and Evolutionary Computation
PublicationSeriesTitleAlternate Genetic,Evolutionary Computation
PublicationTitle Genetic Programming Theory and Practice XII
PublicationYear 2015
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
RelatedPersons Koza, John R.
Goldberg, David E.
RelatedPersons_xml – sequence: 1
  givenname: David E.
  surname: Goldberg
  fullname: Goldberg, David E.
– sequence: 2
  givenname: John R.
  surname: Koza
  fullname: Koza, John R.
SSID ssj0000547321
ssj0001524920
Score 1.8239911
Snippet Classical genetic programming solves problems by applying the Darwinian concepts of selection, survival and reproduction to a population of computer programs....
SourceID springer
SourceType Publisher
StartPage 37
SubjectTerms Epigenetics
Symbolic regression
Title Inheritable Epigenetics in Genetic Programming
URI http://link.springer.com/10.1007/978-3-319-16030-6_3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZoWYABKCDeysBElap-5DUiVAQImAB1i2LHljoQEA0M_HruYqdJHwssVmRV6fXOud5d7vuOkAvJEmZEKHyjstAXMla-5CEssCnzXGhmECj8-BTevoj7cTCu5907dEkpB-pnJa7kP1aFPbAromT_YNnZTWEDrsG-sIKFYV0IfufLrBM3BA4BiNjqjx1Wb5jzW6S9QwBY-FN_fNcMqs7619l3FS66Okvz8txV7yFL13Pn6K5AhGBZIaxGH8jdqStm50nRXyGBdVJInjydCYjSjL6dIrBJz06SaI6EKzrQoGqOCpaKjgtly6ZyNpelcnjMaThkdi6oc7QQN_oIgWg5T8v-4v6GLQ3tkoNv93Qg_gqnZEP-m_IO6USx6JL1q9H9w-uszDbE2couQrHAcaRIHNpeAysBIn5qCR0nUyPxjKjKchEvfOnS6_MqKnneIVuIVPEQQgL62SVruuiR7XpOh-fcdo9stkgn98igZVGvZVFvUnjOZF7Lovvk5Wb0fH3ru6kZ_pSyqPRjriEtFToW4KylUpRTmalhmGQ0joxUFAJQnRslEghLGDWZMsxIJiOkZot0xA9It3gv9CHxWM4CLWPNJcsFF0wamkuVs0RlsQqD5Ihc1j8_xedgmtYk2KCrlKegq7TSVQq6Ov7Lh0_IRnPsTkm3_PzSZxD9lfLcWfgXbOZTAA
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Genetic+Programming+Theory+and+Practice+XII&rft.au=La+Cava%2C+William&rft.au=Spector%2C+Lee&rft.atitle=Inheritable+Epigenetics+in+Genetic+Programming&rft.series=Genetic+and+Evolutionary+Computation&rft.date=2015-06-05&rft.pub=Springer+International+Publishing&rft.isbn=9783319160290&rft.issn=1932-0167&rft.spage=37&rft.epage=51&rft_id=info:doi/10.1007%2F978-3-319-16030-6_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-0167&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-0167&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-0167&client=summon