Measuring Networks

We have adopted the view of graphs and, more generally, cell complexes as a domain upon which we may apply the tools of calculus to formulate differential equations and to analyze data. An important aspect of the discrete differential operators is that the operators are defined by the topology of th...

Full description

Saved in:
Bibliographic Details
Published inDiscrete Calculus pp. 267 - 289
Main Authors Grady, Leo J., Polimeni, Jonathan R.
Format Book Chapter
LanguageEnglish
Published London Springer London 2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We have adopted the view of graphs and, more generally, cell complexes as a domain upon which we may apply the tools of calculus to formulate differential equations and to analyze data. An important aspect of the discrete differential operators is that the operators are defined by the topology of the domain itself. Therefore, in an effort to provide a complete treatment of these differential operators, we examine in this chapter the properties of the network which may be extracted from the structure of these operators. In addition to the network properties extracted directly from the differential operators, we also review other methods for measuring the structural properties of a network. Specifically, the properties of the network that we consider are based on distances, partitioning, geometry, and topology. Our particular focus will be on the measurement of these properties from the graph structure. Applications will illustrate the use of these measures to predict the importance of nodes and to relate these measures to other properties of the subject being modeled by the network.
AbstractList We have adopted the view of graphs and, more generally, cell complexes as a domain upon which we may apply the tools of calculus to formulate differential equations and to analyze data. An important aspect of the discrete differential operators is that the operators are defined by the topology of the domain itself. Therefore, in an effort to provide a complete treatment of these differential operators, we examine in this chapter the properties of the network which may be extracted from the structure of these operators. In addition to the network properties extracted directly from the differential operators, we also review other methods for measuring the structural properties of a network. Specifically, the properties of the network that we consider are based on distances, partitioning, geometry, and topology. Our particular focus will be on the measurement of these properties from the graph structure. Applications will illustrate the use of these measures to predict the importance of nodes and to relate these measures to other properties of the subject being modeled by the network.
Author Grady, Leo J.
Polimeni, Jonathan R.
Author_xml – sequence: 1
  givenname: Leo J.
  surname: Grady
  fullname: Grady, Leo J.
  email: leo.grady@siemens.com
  organization: Siemens Corporate Research, Princeton, USA
– sequence: 2
  givenname: Jonathan R.
  surname: Polimeni
  fullname: Polimeni, Jonathan R.
  email: jonp@nmr.mgh.harvard.edu
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
BookMark eNotj8FOAzEMRI0ACVr2wpULPxCwk2wcH1EFBaktFzhHW5IgKNpFmyJ-n7TUl9FY1njeBE76oU8AV4Q3hMi3wl6R8lbEKS2odPBHMKH9ono6hqaeHLwXdwZNKZ9Yx5JDMudwuUxd-Rk_-vfrVdr-DuOmXMBp7r5Kag46hdeH-5fZo1o8z59mdwtVSPNWWXojK5GdtdxGwx1n22bR2unoTbI5MbpIooVjS5xxzSkhOSvaexO1mQL955bv3f80hvUwbEogDDu4UJsHCvvuocKECmf-AHbfQHs
ContentType Book Chapter
Copyright Springer-Verlag London Limited 2010
Copyright_xml – notice: Springer-Verlag London Limited 2010
DOI 10.1007/978-1-84996-290-2_8
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 1849962901
9781849962902
EndPage 289
GroupedDBID -T.
089
0D6
0DA
0E8
20A
38.
4UP
4V3
A4J
AABBV
AAJYQ
AALIM
AATVQ
ABBUY
ABCYT
ABMKK
ABMNI
ACBPT
ACDPG
ACDTA
ACDUY
ACZTO
ADVHH
AEHEY
AEJLV
AEKFX
AEOKE
AETDV
AEZAY
AHNNE
AHSMR
ALMA_UNASSIGNED_HOLDINGS
ATJMZ
AZZ
BBABE
CZZ
E6I
I4C
IEZ
JJU
MYL
SBO
TBMHI
TPJZQ
UZ6
WZT
Z5O
Z7R
Z7S
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
ID FETCH-LOGICAL-s127t-41c149d764475d37a7f45f92262d83e4fe706d19297d517f0b7ee016492883d23
ISBN 9781849962896
1849962898
IngestDate Tue Jul 29 19:58:30 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s127t-41c149d764475d37a7f45f92262d83e4fe706d19297d517f0b7ee016492883d23
PageCount 23
ParticipantIDs springer_books_10_1007_978_1_84996_290_2_8
PublicationCentury 2000
PublicationDate 2010
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – year: 2010
  text: 2010
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationSubtitle Applied Analysis on Graphs for Computational Science
PublicationTitle Discrete Calculus
PublicationYear 2010
Publisher Springer London
Publisher_xml – name: Springer London
SSID ssj0000416013
Score 1.3947858
Snippet We have adopted the view of graphs and, more generally, cell complexes as a domain upon which we may apply the tools of calculus to formulate differential...
SourceID springer
SourceType Publisher
StartPage 267
SubjectTerms Average Path Length
Betti Number
Cluster Coefficient
Laplacian Matrix
Wiener Index
Title Measuring Networks
URI http://link.springer.com/10.1007/978-1-84996-290-2_8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBZNupQObfqgbzx0alCwZcmyx1LShpBkKEnJZiJLhkJJIHGX_vre-aHESZd0EUYYyb6Tz9990t0R8siVSDjnikZGKsqFy-lMCR98HvCItMYUcLijOxwFvQnvT8V0XaMujy7JVCf5-TOu5D9ahT7QK0bJ7qFZOyh0wDXoF1rQMLRb4LdOs5ZnWeCLB8iL4VXI4Vlw_LacFZZzYBbtfscav8UXZvL_3OTM2--dzTUzzAlDJA9GxenwGimQny3bJAUqUrBd1ASp-Yzg0oGPA35WzW4VNTHKXyArqvrsWNf1gQqP5qNQFrmUxWGDNGQomuTwudsffFiOywW05-alHe2kYZlmyz6EzQRVJPvdGnhnfzr_7Y9PyTGGgjgYowHLr0UOzPyMnJTA3SnN4gq6qtoYVd85aVlZOpUsL8jktTt-6dGy_gRdeUxmlHsJ-I9aBpgUUftyJlMu0ggAK9Ohb3hqpBtogMiR1MKTqaukMZiyLMISzpr5l6Q5X8zNFXHQsU1CZgBthzwVQeSxQDHuJzzFSfQ1eareM8YVtYqrdNIglNiLc6HEIJQYhHKzz8235Gi9QO5IM1t-m3vAUZl6KNX1C553EV0
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Discrete+Calculus&rft.au=Grady%2C+Leo+J.&rft.au=Polimeni%2C+Jonathan+R.&rft.atitle=Measuring+Networks&rft.date=2010-01-01&rft.pub=Springer+London&rft.isbn=9781849962896&rft.spage=267&rft.epage=289&rft_id=info:doi/10.1007%2F978-1-84996-290-2_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781849962896/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781849962896/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781849962896/sc.gif&client=summon&freeimage=true