An Ensemble of Classifiers Guided by the AAL Brain Atlas for Alzheimer’s Disease Detection
Detection of Alzheimer’s disease based on Magnetic Resonance Imaging (MRI) still is one of the most sought goals in the neuroscientific community. Here, we evaluate a ensemble of classifiers each independently trained with disjoint data extracted from a partition of the brain data volumes performed...
Saved in:
Published in | Advances in Computational Intelligence pp. 107 - 114 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2013
|
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 3642386814 9783642386817 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-642-38682-4_13 |
Cover
Loading…
Abstract | Detection of Alzheimer’s disease based on Magnetic Resonance Imaging (MRI) still is one of the most sought goals in the neuroscientific community. Here, we evaluate a ensemble of classifiers each independently trained with disjoint data extracted from a partition of the brain data volumes performed according to the 116 regions of the Anatomical Automatic Labeling (AAL) brain atlas. Grey-matter probability values from 416 subjects (316 controls and 100 patients) of the OASIS database are estimated, partitioned into AAL regions, and summary statistics per region are computed to create the feature sets. Our objective is to discriminate between control subjects and Alzheimer’s disease patients. For validation we performed a leave-one-out process. Elementary classifiers are linear Support Vector Machines (SVM) with model parameter estimated by grid search. The ensemble is composed of one SVM per AAL region, and we test 6 different methods to make the collective decision. The best performance achieved with this approach is 83.6% accuracy, 91.0% sensitivity, 81.3% specificity and 0.86 of area under the ROC curve. Most discriminant regions for some of the collective decision methods are also provided. |
---|---|
AbstractList | Detection of Alzheimer’s disease based on Magnetic Resonance Imaging (MRI) still is one of the most sought goals in the neuroscientific community. Here, we evaluate a ensemble of classifiers each independently trained with disjoint data extracted from a partition of the brain data volumes performed according to the 116 regions of the Anatomical Automatic Labeling (AAL) brain atlas. Grey-matter probability values from 416 subjects (316 controls and 100 patients) of the OASIS database are estimated, partitioned into AAL regions, and summary statistics per region are computed to create the feature sets. Our objective is to discriminate between control subjects and Alzheimer’s disease patients. For validation we performed a leave-one-out process. Elementary classifiers are linear Support Vector Machines (SVM) with model parameter estimated by grid search. The ensemble is composed of one SVM per AAL region, and we test 6 different methods to make the collective decision. The best performance achieved with this approach is 83.6% accuracy, 91.0% sensitivity, 81.3% specificity and 0.86 of area under the ROC curve. Most discriminant regions for some of the collective decision methods are also provided. |
Author | Savio, Alexandre Graña, Manuel |
Author_xml | – sequence: 1 givenname: Alexandre surname: Savio fullname: Savio, Alexandre organization: Grupo de Inteligencia Computacional (GIC), Universidad del País Vasco (UPV/EHU), San Sebastián, Spain – sequence: 2 givenname: Manuel surname: Graña fullname: Graña, Manuel organization: Grupo de Inteligencia Computacional (GIC), Universidad del País Vasco (UPV/EHU), San Sebastián, Spain |
BookMark | eNo1kEFOwzAQRQ0Uibb0Bix8AYPtcRN7GUopSJXYwA7JipMxNaQJisMCVlyD63ES3AKz-dKb0ZfmTcio7Vok5Ezwc8F5fmFyzYBlSjLQmZZMWQEHZJYwJLhn6pCMRSYEA1DmiEz-F0KNyJgDl8zkCk7ILMZnnsZABkqNyWPR0mUbcesapJ2ni6aMMfiAfaSrt1BjTd07HTZIi2JNL_sytLQY0hH1XU-L5mODYYv99-dXpFchYhmRXuGA1RC69pQc-7KJOPvLKXm4Xt4vbtj6bnW7KNYsCgHAKqMrWcuM12hcXXtvao1irnzupTBGAQrFPZel8Frn2uXGOwNuDpV2qkyvTIn87Y2vfWifsLeu616iFdzu_NkkyoJNRuzeld35gx82_WBk |
ContentType | Book Chapter |
Copyright | Springer-Verlag Berlin Heidelberg 2013 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2013 |
DOI | 10.1007/978-3-642-38682-4_13 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Computer Science |
EISBN | 9783642386824 3642386822 |
EISSN | 1611-3349 |
Editor | Joya, Gonzalo Cabestany, Joan Rojas, Ignacio |
Editor_xml | – sequence: 1 givenname: Ignacio surname: Rojas fullname: Rojas, Ignacio email: irojas@atc.ugr.es – sequence: 2 givenname: Gonzalo surname: Joya fullname: Joya, Gonzalo email: gjoya@uma.es – sequence: 3 givenname: Joan surname: Cabestany fullname: Cabestany, Joan email: joan.cabestany@upc.edu |
EndPage | 114 |
GroupedDBID | -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE ALMA_UNASSIGNED_HOLDINGS EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-s1133-c98c2d260de9bddff9d8e154f7f219943e140f02a1f8878b79fb93b53c8b4a093 |
ISBN | 3642386814 9783642386817 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 19:45:32 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1133-c98c2d260de9bddff9d8e154f7f219943e140f02a1f8878b79fb93b53c8b4a093 |
PageCount | 8 |
ParticipantIDs | springer_books_10_1007_978_3_642_38682_4_13 |
PublicationCentury | 2000 |
PublicationDate | 2013 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – year: 2013 text: 2013 |
PublicationDecade | 2010 |
PublicationPlace | Berlin, Heidelberg |
PublicationPlace_xml | – name: Berlin, Heidelberg |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSubtitle | 12th International Work-Conference on Artificial Neural Networks, IWANN 2013, Puerto de la Cruz, Tenerife, Spain, June 12-14, 2013, Proceedings, Part II |
PublicationTitle | Advances in Computational Intelligence |
PublicationYear | 2013 |
Publisher | Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin Heidelberg |
RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Nierstrasz, Oscar Steffen, Bernhard Kittler, Josef Vardi, Moshe Y. Weikum, Gerhard Sudan, Madhu Naor, Moni Mitchell, John C. Terzopoulos, Demetri Pandu Rangan, C. Kanade, Takeo Hutchison, David Tygar, Doug |
RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David organization: Lancaster University, Lancaster, UK – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo organization: Carnegie Mellon University, Pittsburgh, USA – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef organization: University of Surrey, Guildford, UK – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. organization: Cornell University, Ithaca, USA – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann organization: ETH Zurich, Zurich, Switzerland – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. organization: Stanford University, Stanford, USA – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni organization: Weizmann Institute of Science, Rehovot, Israel – sequence: 8 givenname: Oscar surname: Nierstrasz fullname: Nierstrasz, Oscar organization: University of Bern, Bern, Switzerland – sequence: 9 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. organization: Indian Institute of Technology, Madras, India – sequence: 10 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard organization: University of Dortmund, Dortmund, Germany – sequence: 11 givenname: Madhu surname: Sudan fullname: Sudan, Madhu organization: Massachusetts Institute of Technology, USA – sequence: 12 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri organization: University of California, Los Angeles, USA – sequence: 13 givenname: Doug surname: Tygar fullname: Tygar, Doug organization: University of California, Berkeley, USA – sequence: 14 givenname: Moshe Y. surname: Vardi fullname: Vardi, Moshe Y. organization: Rice University, Houston, USA – sequence: 15 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard organization: Max-Planck Institute of Computer Science, Saarbrücken, Germany |
SSID | ssj0000936344 ssj0002792 |
Score | 1.4158379 |
Snippet | Detection of Alzheimer’s disease based on Magnetic Resonance Imaging (MRI) still is one of the most sought goals in the neuroscientific community. Here, we... |
SourceID | springer |
SourceType | Publisher |
StartPage | 107 |
SubjectTerms | Ensemble Decision FMRIB Software Library Linear Support Vector Machine Magnetic Resonance Image Data Support Vector Machine |
Title | An Ensemble of Classifiers Guided by the AAL Brain Atlas for Alzheimer’s Disease Detection |
URI | http://link.springer.com/10.1007/978-3-642-38682-4_13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEG6GWQTxoK6Kb_rgbWiZpPPqg4dRRtdl3NOu7EEI_cQBzcAkc9g9Cf4K_56_xKruTjbrLsJ6CSGEdFL9pbq6qr4qQl7xXMpSCMlg9UtZpmTOVGkrxrXGAmHamRzZyJ-OioOT7PA0P51Mfo6ylnadeq3Pr-WV_M-swjWYV2TJ3mBmh4fCBTiH-YUjzDAc_zJ-L7tZQ3pxiN63gbeHvRl6v97HUZnNwYOCZPwRo-Ui5_XDVmK0_G0iA3en2cUs-j6NuZktm9Z-VyEN0XfRXDvsoA34WptowSJBZbECqEh0oHRwk09gXHw7_2rX2KElJlWIFgt-YkwIVF3n88ACLlBgtn2zijGNo003_jS77bXQ2E2BLSMuuSl6N-XsH1W8PKMEzLuqqAKvuid2gdKGbU_Qgzbo6QKrL_JQ7TTq3tg-Ny7jSeCmXlkhxkkhMBjzo7Gsxs7He2lW8GxK9hbLw9XnwVU3F7zw3UjiAo81F0NwKrwXUobieyeh1uTwHUk5omteN-iVALy3a47vkTvIdaFIQgER3ycT2-yTW6E_6dk-udsLn0bhPyBfFg3t4UA3jo7gQAMcqDqjAAcKcKAeDtTDgQIc6ACH3z9-tTQCgQ5AeEhO3i-P3x2w2KGDtUnCOdOi0qmBLbGxQhnjnDCVBaPclS7FotPcwv7dzVOZOFjMKlUKpwRXOdeVyiTI9RGZNpvGPiZUZILPXSF9O3STzFVq06I0ziqttdHJEzLrBVXjP9fWfcFtEGvNaxBr7cVao1if3ujuZ-T2BWSfk2m33dkXYGt26mXEwh-uiXO4 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advances+in+Computational+Intelligence&rft.au=Savio%2C+Alexandre&rft.au=Gra%C3%B1a%2C+Manuel&rft.atitle=An+Ensemble+of+Classifiers+Guided+by+the+AAL+Brain+Atlas+for+Alzheimer%E2%80%99s+Disease+Detection&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2013-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783642386824&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=107&rft.epage=114&rft_id=info:doi/10.1007%2F978-3-642-38682-4_13 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon |