An Ensemble of Classifiers Guided by the AAL Brain Atlas for Alzheimer’s Disease Detection

Detection of Alzheimer’s disease based on Magnetic Resonance Imaging (MRI) still is one of the most sought goals in the neuroscientific community. Here, we evaluate a ensemble of classifiers each independently trained with disjoint data extracted from a partition of the brain data volumes performed...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Computational Intelligence pp. 107 - 114
Main Authors Savio, Alexandre, Graña, Manuel
Format Book Chapter
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2013
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3642386814
9783642386817
ISSN0302-9743
1611-3349
DOI10.1007/978-3-642-38682-4_13

Cover

Loading…
Abstract Detection of Alzheimer’s disease based on Magnetic Resonance Imaging (MRI) still is one of the most sought goals in the neuroscientific community. Here, we evaluate a ensemble of classifiers each independently trained with disjoint data extracted from a partition of the brain data volumes performed according to the 116 regions of the Anatomical Automatic Labeling (AAL) brain atlas. Grey-matter probability values from 416 subjects (316 controls and 100 patients) of the OASIS database are estimated, partitioned into AAL regions, and summary statistics per region are computed to create the feature sets. Our objective is to discriminate between control subjects and Alzheimer’s disease patients. For validation we performed a leave-one-out process. Elementary classifiers are linear Support Vector Machines (SVM) with model parameter estimated by grid search. The ensemble is composed of one SVM per AAL region, and we test 6 different methods to make the collective decision. The best performance achieved with this approach is 83.6% accuracy, 91.0% sensitivity, 81.3% specificity and 0.86 of area under the ROC curve. Most discriminant regions for some of the collective decision methods are also provided.
AbstractList Detection of Alzheimer’s disease based on Magnetic Resonance Imaging (MRI) still is one of the most sought goals in the neuroscientific community. Here, we evaluate a ensemble of classifiers each independently trained with disjoint data extracted from a partition of the brain data volumes performed according to the 116 regions of the Anatomical Automatic Labeling (AAL) brain atlas. Grey-matter probability values from 416 subjects (316 controls and 100 patients) of the OASIS database are estimated, partitioned into AAL regions, and summary statistics per region are computed to create the feature sets. Our objective is to discriminate between control subjects and Alzheimer’s disease patients. For validation we performed a leave-one-out process. Elementary classifiers are linear Support Vector Machines (SVM) with model parameter estimated by grid search. The ensemble is composed of one SVM per AAL region, and we test 6 different methods to make the collective decision. The best performance achieved with this approach is 83.6% accuracy, 91.0% sensitivity, 81.3% specificity and 0.86 of area under the ROC curve. Most discriminant regions for some of the collective decision methods are also provided.
Author Savio, Alexandre
Graña, Manuel
Author_xml – sequence: 1
  givenname: Alexandre
  surname: Savio
  fullname: Savio, Alexandre
  organization: Grupo de Inteligencia Computacional (GIC), Universidad del País Vasco (UPV/EHU), San Sebastián, Spain
– sequence: 2
  givenname: Manuel
  surname: Graña
  fullname: Graña, Manuel
  organization: Grupo de Inteligencia Computacional (GIC), Universidad del País Vasco (UPV/EHU), San Sebastián, Spain
BookMark eNo1kEFOwzAQRQ0Uibb0Bix8AYPtcRN7GUopSJXYwA7JipMxNaQJisMCVlyD63ES3AKz-dKb0ZfmTcio7Vok5Ezwc8F5fmFyzYBlSjLQmZZMWQEHZJYwJLhn6pCMRSYEA1DmiEz-F0KNyJgDl8zkCk7ILMZnnsZABkqNyWPR0mUbcesapJ2ni6aMMfiAfaSrt1BjTd07HTZIi2JNL_sytLQY0hH1XU-L5mODYYv99-dXpFchYhmRXuGA1RC69pQc-7KJOPvLKXm4Xt4vbtj6bnW7KNYsCgHAKqMrWcuM12hcXXtvao1irnzupTBGAQrFPZel8Frn2uXGOwNuDpV2qkyvTIn87Y2vfWifsLeu616iFdzu_NkkyoJNRuzeld35gx82_WBk
ContentType Book Chapter
Copyright Springer-Verlag Berlin Heidelberg 2013
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2013
DOI 10.1007/978-3-642-38682-4_13
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Computer Science
EISBN 9783642386824
3642386822
EISSN 1611-3349
Editor Joya, Gonzalo
Cabestany, Joan
Rojas, Ignacio
Editor_xml – sequence: 1
  givenname: Ignacio
  surname: Rojas
  fullname: Rojas, Ignacio
  email: irojas@atc.ugr.es
– sequence: 2
  givenname: Gonzalo
  surname: Joya
  fullname: Joya, Gonzalo
  email: gjoya@uma.es
– sequence: 3
  givenname: Joan
  surname: Cabestany
  fullname: Cabestany, Joan
  email: joan.cabestany@upc.edu
EndPage 114
GroupedDBID -DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-s1133-c98c2d260de9bddff9d8e154f7f219943e140f02a1f8878b79fb93b53c8b4a093
ISBN 3642386814
9783642386817
ISSN 0302-9743
IngestDate Tue Jul 29 19:45:32 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1133-c98c2d260de9bddff9d8e154f7f219943e140f02a1f8878b79fb93b53c8b4a093
PageCount 8
ParticipantIDs springer_books_10_1007_978_3_642_38682_4_13
PublicationCentury 2000
PublicationDate 2013
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013
PublicationDecade 2010
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Berlin, Heidelberg
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSubtitle 12th International Work-Conference on Artificial Neural Networks, IWANN 2013, Puerto de la Cruz, Tenerife, Spain, June 12-14, 2013, Proceedings, Part II
PublicationTitle Advances in Computational Intelligence
PublicationYear 2013
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Nierstrasz, Oscar
Steffen, Bernhard
Kittler, Josef
Vardi, Moshe Y.
Weikum, Gerhard
Sudan, Madhu
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Pandu Rangan, C.
Kanade, Takeo
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, UK
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, UK
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zurich, Zurich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University, Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: Oscar
  surname: Nierstrasz
  fullname: Nierstrasz, Oscar
  organization: University of Bern, Bern, Switzerland
– sequence: 9
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology, Madras, India
– sequence: 10
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: University of Dortmund, Dortmund, Germany
– sequence: 11
  givenname: Madhu
  surname: Sudan
  fullname: Sudan, Madhu
  organization: Massachusetts Institute of Technology, USA
– sequence: 12
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 13
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
– sequence: 14
  givenname: Moshe Y.
  surname: Vardi
  fullname: Vardi, Moshe Y.
  organization: Rice University, Houston, USA
– sequence: 15
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max-Planck Institute of Computer Science, Saarbrücken, Germany
SSID ssj0000936344
ssj0002792
Score 1.4158379
Snippet Detection of Alzheimer’s disease based on Magnetic Resonance Imaging (MRI) still is one of the most sought goals in the neuroscientific community. Here, we...
SourceID springer
SourceType Publisher
StartPage 107
SubjectTerms Ensemble Decision
FMRIB Software Library
Linear Support Vector Machine
Magnetic Resonance Image Data
Support Vector Machine
Title An Ensemble of Classifiers Guided by the AAL Brain Atlas for Alzheimer’s Disease Detection
URI http://link.springer.com/10.1007/978-3-642-38682-4_13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEG6GWQTxoK6Kb_rgbWiZpPPqg4dRRtdl3NOu7EEI_cQBzcAkc9g9Cf4K_56_xKruTjbrLsJ6CSGEdFL9pbq6qr4qQl7xXMpSCMlg9UtZpmTOVGkrxrXGAmHamRzZyJ-OioOT7PA0P51Mfo6ylnadeq3Pr-WV_M-swjWYV2TJ3mBmh4fCBTiH-YUjzDAc_zJ-L7tZQ3pxiN63gbeHvRl6v97HUZnNwYOCZPwRo-Ui5_XDVmK0_G0iA3en2cUs-j6NuZktm9Z-VyEN0XfRXDvsoA34WptowSJBZbECqEh0oHRwk09gXHw7_2rX2KElJlWIFgt-YkwIVF3n88ACLlBgtn2zijGNo003_jS77bXQ2E2BLSMuuSl6N-XsH1W8PKMEzLuqqAKvuid2gdKGbU_Qgzbo6QKrL_JQ7TTq3tg-Ny7jSeCmXlkhxkkhMBjzo7Gsxs7He2lW8GxK9hbLw9XnwVU3F7zw3UjiAo81F0NwKrwXUobieyeh1uTwHUk5omteN-iVALy3a47vkTvIdaFIQgER3ycT2-yTW6E_6dk-udsLn0bhPyBfFg3t4UA3jo7gQAMcqDqjAAcKcKAeDtTDgQIc6ACH3z9-tTQCgQ5AeEhO3i-P3x2w2KGDtUnCOdOi0qmBLbGxQhnjnDCVBaPclS7FotPcwv7dzVOZOFjMKlUKpwRXOdeVyiTI9RGZNpvGPiZUZILPXSF9O3STzFVq06I0ziqttdHJEzLrBVXjP9fWfcFtEGvNaxBr7cVao1if3ujuZ-T2BWSfk2m33dkXYGt26mXEwh-uiXO4
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advances+in+Computational+Intelligence&rft.au=Savio%2C+Alexandre&rft.au=Gra%C3%B1a%2C+Manuel&rft.atitle=An+Ensemble+of+Classifiers+Guided+by+the+AAL+Brain+Atlas+for+Alzheimer%E2%80%99s+Disease+Detection&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2013-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783642386824&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=107&rft.epage=114&rft_id=info:doi/10.1007%2F978-3-642-38682-4_13
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon