Classification Based on Prototypes Generated with Fuzzy C-means Clustering and Differential Evolution

In this paper we propose a simple and effective combined classifier based on the data reduction carried-out through applying fuzzy C-means clustering and differential evolution techniques. The idea is to produce clusters from the training set instances applying fuzzy C-means algorithm. In further st...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Techniques for Knowledge Engineering and Innovative Applications pp. 177 - 188
Main Authors Jędrzejowicz, Joanna, Jędrzejowicz, Piotr
Format Book Chapter
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2013
SeriesCommunications in Computer and Information Science
Subjects
Online AccessGet full text
ISBN9783642420160
3642420168
ISSN1865-0929
1865-0937
DOI10.1007/978-3-642-42017-7_13

Cover

Abstract In this paper we propose a simple and effective combined classifier based on the data reduction carried-out through applying fuzzy C-means clustering and differential evolution techniques. The idea is to produce clusters from the training set instances applying fuzzy C-means algorithm. In further step cluster centroids are used as seeds in the differential evolution algorithm to construct prototypes, each representing a single cluster. Simple distance-based weak classifiers are then used to produce the AdaBoost combined classifier. The approach has been validated experimentally. Computational experiment results confirm good quality of the proposed classifier.
AbstractList In this paper we propose a simple and effective combined classifier based on the data reduction carried-out through applying fuzzy C-means clustering and differential evolution techniques. The idea is to produce clusters from the training set instances applying fuzzy C-means algorithm. In further step cluster centroids are used as seeds in the differential evolution algorithm to construct prototypes, each representing a single cluster. Simple distance-based weak classifiers are then used to produce the AdaBoost combined classifier. The approach has been validated experimentally. Computational experiment results confirm good quality of the proposed classifier.
Author Jędrzejowicz, Piotr
Jędrzejowicz, Joanna
Author_xml – sequence: 1
  givenname: Joanna
  surname: Jędrzejowicz
  fullname: Jędrzejowicz, Joanna
  email: jj@inf.ug.edu.pl
  organization: Institute of Informatics, Gdańsk University, Gdańsk, Poland
– sequence: 2
  givenname: Piotr
  surname: Jędrzejowicz
  fullname: Jędrzejowicz, Piotr
  email: pj@am.gdynia.pl
  organization: Department of Information Systems, Gdynia Maritime University, Gdynia, Poland
BookMark eNpVkMtOwzAQRQ0UiVL6Byz8AwY7Tv1YQmgLUiVYwNpy4gkEglPFLlX79TgFITGbGZ0rXY3OORr5zgNCl4xeMUrltZaKcCLyjOQZZZJIw_gRmibMEzwweYzGTIkZoZrLk3-ZoKO_LNNnaBrCO00zU1Tp2RhB0doQmrqpbGw6j29tAIfT8dR3sYu7NQS8BA-9jYlvm_iGF5v9focL8gnWB1y0mxChb_wrtt7hu6auoQcfG9vi-VfXbobaC3Ra2zbA9HdP0Mti_lzck9Xj8qG4WZHAGOekopUSlZRSA2hZS8ZKVYEuHcsrYIJZXVrLee50rjLrlHBCsVw4zrWtFUg-QdlPb1gPH0Fvyq77CIZRM7g0SYzhJqkxB29mcMm_ARDpZV0
ContentType Book Chapter
Copyright Springer-Verlag Berlin Heidelberg 2013
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2013
DOI 10.1007/978-3-642-42017-7_13
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9783642420177
3642420176
EISSN 1865-0937
Editor Tweedale, Jeffrey W.
Jain, Lakhmi C.
Editor_xml – sequence: 1
  givenname: Jeffrey W.
  surname: Tweedale
  fullname: Tweedale, Jeffrey W.
  email: Jeff.Tweedale@unisa.edu.au
– sequence: 2
  givenname: Lakhmi C.
  surname: Jain
  fullname: Jain, Lakhmi C.
  email: Lakhmi.Jain@unisa.edu.au
EndPage 188
GroupedDBID -JY
-K2
0D6
0DA
38.
9-X
AABBV
AARVG
AAUBL
AAWHR
ABBVZ
ABFTD
ABMLC
ABMNI
AEHWL
AEJLV
AEKFX
AETDV
AEZAY
AFJMS
ALMA_UNASSIGNED_HOLDINGS
ARZOH
AZZ
BBABE
CZZ
I4C
IEZ
JJU
MA.
SBO
SNUHX
TPJZQ
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
ID FETCH-LOGICAL-s1133-c0c86c7779ee97f711b8ce9bd14ce161a9baa334d9482ad86d68146d339af8e73
ISBN 9783642420160
3642420168
ISSN 1865-0929
IngestDate Tue Jul 29 20:01:15 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1133-c0c86c7779ee97f711b8ce9bd14ce161a9baa334d9482ad86d68146d339af8e73
PageCount 12
ParticipantIDs springer_books_10_1007_978_3_642_42017_7_13
PublicationCentury 2000
PublicationDate 2013
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013
PublicationDecade 2010
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Berlin, Heidelberg
PublicationSeriesTitle Communications in Computer and Information Science
PublicationSubtitle 16th International Conference, KES 2012, San Sebastian, Spain, September 10-12, 2012, Revised Selected Papers
PublicationTitle Advanced Techniques for Knowledge Engineering and Innovative Applications
PublicationYear 2013
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
SSID ssj0000580895
ssj0001088483
ssib054953581
Score 1.4072956
Snippet In this paper we propose a simple and effective combined classifier based on the data reduction carried-out through applying fuzzy C-means clustering and...
SourceID springer
SourceType Publisher
StartPage 177
SubjectTerms combined classifier
differential evolution
evolutionary algorithms
fuzzy C-means clustering
machine learning
Title Classification Based on Prototypes Generated with Fuzzy C-means Clustering and Differential Evolution
URI http://link.springer.com/10.1007/978-3-642-42017-7_13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcAEOQAHx1h64RYvi2N7HEUqqqjzUQ4p6s2zvRioCW4qdIvkf8q-Y2YezoVWlcrGslROvd77MTj7PfEPIu_laqDrTFYNoomJZAv9TStjmmdY85UKkRq2xOPnrN358lp2c5-eTyZ8oa2nbV-_r4dq6kv-xKoyBXbFK9haWHb8UBuAc7AtHsDAc_wl-92lWl14c3t6vggyrlVaYfQ4sWaw16NN-XQfUS-OCz5itwyQaDCyV0pvB_Gh_X9SDY9fLpilvvOT0ou03MfRso01MQXLg-ggbpcaXEqebtm-R8-282nUfct-PtsMAvon9MrBzzg5_blG-IUz7k-_h0iO5v7z0K-rcIco0d_tVLp0rZHTNKvxzjyWawZfFZAc2ntgjOwLZObtBC8zWpWQQeaB2XuTZJc_ZXHl6xcRjTnXGe_DEd5VxwUDieg5e2Wfi1BK4GcO7CSYK7J98R8hsSu5-WJ58-R5cW45pvEFpzsnOy7n0JdGWDgRvn1nR2HGiWIkUHkQ6rajdg0VVoNfN4sp7fRsurR6RB1hCQ7G2BWzwmExMc0AeBptQb4MDcj9C6BNi9nFDLW4onOxwQ0fcUMQNtbihHjd0hxsKZqcxbuiIm6fk7Gi5OjxmvgsI65IkTVk9ryWvhRDKGCXWIkkqWRtV6SSrDXiYUlVlmaaZVplclFpyzZHW1mmqyrU0In1Gpk3bmOeE8oVOVF4nVnVLCzCAyTlck68ljPLFCzILq1bg77orgqg3fKJIC1jjwq5xgWv88lZXvyL3doB-Tab9ZmveQDzbV289Vv4C2xyaOQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advanced+Techniques+for+Knowledge+Engineering+and+Innovative+Applications&rft.au=J%C4%99drzejowicz%2C+Joanna&rft.au=J%C4%99drzejowicz%2C+Piotr&rft.atitle=Classification+Based+on+Prototypes+Generated+with+Fuzzy+C-means+Clustering+and+Differential+Evolution&rft.series=Communications+in+Computer+and+Information+Science&rft.date=2013-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783642420160&rft.issn=1865-0929&rft.eissn=1865-0937&rft.spage=177&rft.epage=188&rft_id=info:doi/10.1007%2F978-3-642-42017-7_13
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-0929&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-0929&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-0929&client=summon