Recognition Systems for Practical Applications

Aiming at a comprehensive overview of Markov-model based handwriting recognition this chapter focusses on the description of recognition systems for practical applications. After the theoretical aspects and key developments in the field have been surveyed, integration aspects and concrete evaluation...

Full description

Saved in:
Bibliographic Details
Published inMarkov Models for Handwriting Recognition pp. 47 - 66
Main Authors Plötz, Thomas, Fink, Gernot A.
Format Book Chapter
LanguageEnglish
Published London Springer London 07.09.2011
SeriesSpringerBriefs in Computer Science
Subjects
Online AccessGet full text
ISBN9781447121879
1447121872
ISSN2191-5768
2191-5776
DOI10.1007/978-1-4471-2188-6_5

Cover

Loading…
Abstract Aiming at a comprehensive overview of Markov-model based handwriting recognition this chapter focusses on the description of recognition systems for practical applications. After the theoretical aspects and key developments in the field have been surveyed, integration aspects and concrete evaluations of recognition capabilities are discussed. The chapter starts with a description of the most relevant data-sets. As usual for all experimental science, handwriting recognition research relies on the availability of high-quality sample data for training and evaluation purposes. According to the general shift of research efforts from online to offline handwriting recognition, the majority of systems described in the current literature is dedicated to offline recognition. Reviewing the literature, we identified seven major recognition systems. We concentrated on those systems that are still being maintained and further developed. In this chapter their key features will be described and performance figures will be given.
AbstractList Aiming at a comprehensive overview of Markov-model based handwriting recognition this chapter focusses on the description of recognition systems for practical applications. After the theoretical aspects and key developments in the field have been surveyed, integration aspects and concrete evaluations of recognition capabilities are discussed. The chapter starts with a description of the most relevant data-sets. As usual for all experimental science, handwriting recognition research relies on the availability of high-quality sample data for training and evaluation purposes. According to the general shift of research efforts from online to offline handwriting recognition, the majority of systems described in the current literature is dedicated to offline recognition. Reviewing the literature, we identified seven major recognition systems. We concentrated on those systems that are still being maintained and further developed. In this chapter their key features will be described and performance figures will be given.
Author Fink, Gernot A.
Plötz, Thomas
Author_xml – sequence: 1
  givenname: Thomas
  surname: Plötz
  fullname: Plötz, Thomas
  email: thomas.ploetz@newcastle.ac.uk
– sequence: 2
  givenname: Gernot A.
  surname: Fink
  fullname: Fink, Gernot A.
BookMark eNo9UMtOwzAQNFAk2pIv4JIfcPHG72NV8ZIqgXicLTt2qkCJozgX_h5bPPayszujkWZWaDHEISB0BWQDhMhrLRUGzJgE3IBSWBh-glZQHuUmp2jZgAbMpRRnqMryP07qxT8n1AWqUnoneQSQBtgSbZ5DGw9DP_dxqF--0hw-U93FqX6abDv3rT3W23E8ZlAU6RKdd_aYQvW71-jt9uZ1d4_3j3cPu-0eJ4CGY0mtY1QoAGqpkl4CbzW3xDspFfMQPGu8Zo4SzX1onZadpR0NHThBaMZrBD--aZz64RAm42L8SAaIKYWYnNCAKRlNKcDkQug3rtlPzQ
ContentType Book Chapter
Copyright Thomas Plötz 2011
Copyright_xml – notice: Thomas Plötz 2011
DOI 10.1007/978-1-4471-2188-6_5
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISBN 1447121880
9781447121886
EISSN 2191-5776
EndPage 66
GroupedDBID -T.
089
0D6
0DA
0E8
20A
38.
92K
A4J
AABBV
AAJYQ
AAMFE
AATVQ
ABBUY
ABCYT
ABFCV
ABMNI
ACBPT
ACDTA
ACDUY
AECAB
AECMQ
AEGQK
AEHEY
AEJLV
AEKFX
AETDV
AEZAY
AHNNE
ALMA_UNASSIGNED_HOLDINGS
ANXAN
ATJMZ
AZZ
BBABE
BC-
C9S
C9V
CZZ
I4C
IEZ
MYL
SBO
TCUKC
TPJZQ
UZ6
Z7R
Z7X
Z81
Z83
Z84
Z85
Z88
ID FETCH-LOGICAL-s1125-73ab4368113a387d715c95a0db7784d1ed42d94b3095decb97fa3f3ef1b603fa3
ISBN 9781447121879
1447121872
ISSN 2191-5768
IngestDate Tue Jul 29 20:32:23 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1125-73ab4368113a387d715c95a0db7784d1ed42d94b3095decb97fa3f3ef1b603fa3
PageCount 20
ParticipantIDs springer_books_10_1007_978_1_4471_2188_6_5
PublicationCentury 2000
PublicationDate 20110907
PublicationDateYYYYMMDD 2011-09-07
PublicationDate_xml – month: 9
  year: 2011
  text: 20110907
  day: 7
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationSeriesTitle SpringerBriefs in Computer Science
PublicationSeriesTitleAlternate SpringerBriefs Computer Sci.
PublicationTitle Markov Models for Handwriting Recognition
PublicationYear 2011
Publisher Springer London
Publisher_xml – name: Springer London
SSID ssj0000610214
ssj0000602596
Score 1.3822174
Snippet Aiming at a comprehensive overview of Markov-model based handwriting recognition this chapter focusses on the description of recognition systems for practical...
SourceID springer
SourceType Publisher
StartPage 47
SubjectTerms Datasets
Evaluation
Frameworks
Organizations
Research groups
Toolkits
Title Recognition Systems for Practical Applications
URI http://link.springer.com/10.1007/978-1-4471-2188-6_5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELXK9lI40NJWfLXKgROrrDbxJs4eAVGtUFv1ABW3KI6dS1FW2myLxK_njT8Sw_YClyixVnF2XjyZsT3vMXaSS5WKrJnGaVUXMb7QGn6QI2vVTV1k8I6zggqFf_zMFzezq9vsdlDbNNUlazmpH_5bV_IaVNEGXKlK9gXI9jdFA86BL45AGMdnwe_TaVanMLT6s_xnxMzuDKnCeFG16p5IisyOOrcxaFhm_3VHq-LnuVFwDXcGEXxISe0U-apdrsdnk_BVCu7lGc5Nf5bryIAcLINbP0X8yV0_bXiOq6azFYZWRcI7lXDWgaZRqdZpY9ZxbEVHniSlSNFEkpKK-eDL4BeTmFIb-9kJ20ToPy37pvsSWzmWDR8_bOtA9ouuYvRVxHmZbbEtUWQj9vbs8ur7736mbZojrnOkgvbayJmT6qB_KlPx55469URg_l_0XFWWjvhZpxsr6CYwuX7PdqhYJaIqEhj1A3uj2z2261KLyNm4Q5O3u2_bY9sBFeVHNglAjhzIEUCOepCjEORP7Obb5fXFInZaGnGHiDqLBa8kiQ0kCa94IZRIsnqeVVMlBcajSrSapWo-kxwht9K1nIum4g3XTSLzKcf5ZzZql63eZ5HiTaOlIpYmZOcY4iSrUyA1RuwqJS8O2Km3SEmjoys9NTbMVyYlma8k85Uw3-FLfnzE3g3v4jEbrVd_9RfEhGv51YH-CKhVVlI
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Markov+Models+for+Handwriting+Recognition&rft.au=Pl%C3%B6tz%2C+Thomas&rft.au=Fink%2C+Gernot+A.&rft.atitle=Recognition+Systems+for+Practical+Applications&rft.series=SpringerBriefs+in+Computer+Science&rft.date=2011-09-07&rft.pub=Springer+London&rft.isbn=9781447121879&rft.issn=2191-5768&rft.eissn=2191-5776&rft.spage=47&rft.epage=66&rft_id=info:doi/10.1007%2F978-1-4471-2188-6_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-5768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-5768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-5768&client=summon