Improving Classification Performance of BCIs by Using Stationary Common Spatial Patterns and Unsupervised Bias Adaptation

Non-stationarities in EEG signals coming from electrode artefacts, muscular activity or changes of task involvement can negatively affect the classification accuracy of Brain-Computer Interface (BCI) systems. In this paper we investigate three methods to alleviate this: (1) Regularization of Common...

Full description

Saved in:
Bibliographic Details
Published inHybrid Artificial Intelligent Systems pp. 34 - 41
Main Authors Wojcikiewicz, Wojciech, Vidaurre, Carmen, Kawanabe, Motoaki
Format Book Chapter
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2011
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3642212212
9783642212215
ISSN0302-9743
1611-3349
DOI10.1007/978-3-642-21222-2_5

Cover

Abstract Non-stationarities in EEG signals coming from electrode artefacts, muscular activity or changes of task involvement can negatively affect the classification accuracy of Brain-Computer Interface (BCI) systems. In this paper we investigate three methods to alleviate this: (1) Regularization of Common Spatial Patterns (CSP) towards stationary subspaces in order to reduce the influence of artefacts. (2) Unsupervised adaptation of the classifier bias with the goal to account for systematic shifts of the features occurring for example in the transition from calibration to feedback session or with increasing fatigue of the subject. (3) Decomposition of the CSP projection matrix into a whitening and a rotation part and adaptation of the whitening matrix in order to reduce the influence of non-task related changes. We study all three approaches on a data set of 80 subjects and show that stationary features with bias adaptation significantly outperforms the other combinations.
AbstractList Non-stationarities in EEG signals coming from electrode artefacts, muscular activity or changes of task involvement can negatively affect the classification accuracy of Brain-Computer Interface (BCI) systems. In this paper we investigate three methods to alleviate this: (1) Regularization of Common Spatial Patterns (CSP) towards stationary subspaces in order to reduce the influence of artefacts. (2) Unsupervised adaptation of the classifier bias with the goal to account for systematic shifts of the features occurring for example in the transition from calibration to feedback session or with increasing fatigue of the subject. (3) Decomposition of the CSP projection matrix into a whitening and a rotation part and adaptation of the whitening matrix in order to reduce the influence of non-task related changes. We study all three approaches on a data set of 80 subjects and show that stationary features with bias adaptation significantly outperforms the other combinations.
Author Kawanabe, Motoaki
Vidaurre, Carmen
Wojcikiewicz, Wojciech
Author_xml – sequence: 1
  givenname: Wojciech
  surname: Wojcikiewicz
  fullname: Wojcikiewicz, Wojciech
  email: wojwoj@mail.tu-berlin.de
  organization: Bernstein Center for Computational Neuroscience, Berlin, Germany
– sequence: 2
  givenname: Carmen
  surname: Vidaurre
  fullname: Vidaurre, Carmen
  email: carmen.vidaurre@tu-berlin.de
  organization: Technical University of Berlin, Berlin, Germany
– sequence: 3
  givenname: Motoaki
  surname: Kawanabe
  fullname: Kawanabe, Motoaki
  email: nabe@first.fraunhofer.de
  organization: Fraunhofer Institute FIRST, Berlin, Germany
BookMark eNo1kMtOwzAQRQ0Uibb0C9j4Bwx-JE6ybCMelSpRqXRtOc4EBRo7skOl_D1uCxuPdebOaHRmaGKdBYQeGH1klGZPRZYTQWTCCWecx1elV2gRqYjsjPg1mjLJGBEiKW7Q7L_B-ARNqaCcFFki7tAshC9KKc8KPkXjuuu9O7b2E5cHHULbtEYPrbN4C75xvtPWAHYNXpXrgKsR78MpuxvOIe1HXLqui_FdH4k-4K0eBvA2YG1rvLfhpwd_bAPUeNXqgJe17i-z9-i20YcAi786R_uX54_yjWzeX9flckMCYzwlUhudijxvcl7VjaSsbjIJCaSUcwCQRlR5kktTCCoSCrWB-BG1NKnkhuaFmCN22Rt6H08HryrnvoNiVJ3EqqhQCRVdqbNFFcWKX22jal4
ContentType Book Chapter
Copyright Springer-Verlag Berlin Heidelberg 2011
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2011
DOI 10.1007/978-3-642-21222-2_5
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9783642212222
3642212220
EISSN 1611-3349
Editor Kurzyński, Marek
Woźniak, Michał
Corchado, Emilio
Editor_xml – sequence: 1
  givenname: Emilio
  surname: Corchado
  fullname: Corchado, Emilio
  email: escorchado@ubu.es
– sequence: 2
  givenname: Marek
  surname: Kurzyński
  fullname: Kurzyński, Marek
  email: marek.kurzynski@pwr.wroc.pl
– sequence: 3
  givenname: Michał
  surname: Woźniak
  fullname: Woźniak, Michał
  email: Michal.Wozniak@pwr.wroc.pl
EndPage 41
GroupedDBID -DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-s1125-6aca5388f82bdf601df76e4e5022eee6c3b8486c930340edce3033d6c562c0893
ISBN 3642212212
9783642212215
ISSN 0302-9743
IngestDate Tue Jul 29 19:47:04 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1125-6aca5388f82bdf601df76e4e5022eee6c3b8486c930340edce3033d6c562c0893
PageCount 8
ParticipantIDs springer_books_10_1007_978_3_642_21222_2_5
PublicationCentury 2000
PublicationDate 2011
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – year: 2011
  text: 2011
PublicationDecade 2010
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Berlin, Heidelberg
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSubtitle 6th International Conference, HAIS 2011, Wroclaw, Poland, May 23-25, 2011, Proceedings, Part II
PublicationTitle Hybrid Artificial Intelligent Systems
PublicationYear 2011
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Nierstrasz, Oscar
Steffen, Bernhard
Kittler, Josef
Vardi, Moshe Y.
Weikum, Gerhard
Sudan, Madhu
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Pandu Rangan, C.
Kanade, Takeo
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, UK
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, UK
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zurich, Zurich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University, Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: Oscar
  surname: Nierstrasz
  fullname: Nierstrasz, Oscar
  organization: University of Bern, Bern, Switzerland
– sequence: 9
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology, Madras, India
– sequence: 10
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: University of Dortmund, Dortmund, Germany
– sequence: 11
  givenname: Madhu
  surname: Sudan
  fullname: Sudan, Madhu
  organization: Massachusetts Institute of Technology, USA
– sequence: 12
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 13
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
– sequence: 14
  givenname: Moshe Y.
  surname: Vardi
  fullname: Vardi, Moshe Y.
  organization: Rice University, Houston, USA
– sequence: 15
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max-Planck Institute of Computer Science, Saarbrücken, Germany
SSID ssj0002792
ssj0000537738
Score 1.3907102
Snippet Non-stationarities in EEG signals coming from electrode artefacts, muscular activity or changes of task involvement can negatively affect the classification...
SourceID springer
SourceType Publisher
StartPage 34
SubjectTerms adaptive classification
Brain-Computer Interface
Common Spatial Patterns
stationary features
Title Improving Classification Performance of BCIs by Using Stationary Common Spatial Patterns and Unsupervised Bias Adaptation
URI http://link.springer.com/10.1007/978-3-642-21222-2_5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELW2ywV6AAoIyod84MQqKJs4bnrg0FZFbamqSnSr3iLbsaWASCqSVbX8L_4fM7aTeFuEVC5RNlptkvHb8fNk3gsh72UaS5YnMspLk0ZMxzISVpxjVGqUzIwStkH2jB8t2MlVdjWZ_A66lpad_Kh-_VVX8j-jCsdgXFEle4-RHX4UDsA-jC9sYYRhe4v8rpdZnU_hCsVWWF2vvAvE8WCv2a05kdvO22-q-l7pm0rZirH9rNVQC76sSoFOTb4H5McoEPsibkQtpCtgN10DjDOE2ViUsK_XxEtxkDoPFAlASPcPjlukuq5F4atrAMCOPVSoYM7Czm64h3Pr91k75-hF3S6vMZm1QIv3K9HO9kpxHTQPYJR1--nUPwg5azrbXzbr31XRp66wtmEVfmFto69tzv5h_WVlKCyBGThxutBeDQaZHtZKLnlql9w5WjamziLVJ2xfSXVTv7PgujOphH0kHNVMcC7YFtkG2djJ2ZQ82Ds8Ob0cSntokWNd7TwhQI9G9zDLXRJKjPpLTpwJ1HgLgzOWMz--dcY7z-stDbp4QjZRGkNRswLBfUomut4ij_tgUx_sLfIocLl8RlYDRug6RmiAEdoYihihckUtRuiIEeowQj1GaI8RChihIUYoYoSOGHlOFp8PLw6OIv_Gj6gF3p9FXCgBM3BuIHuUhsfz0uxwzXQGTFNrzVUqc5ZztQvEi8XYwAw7ackVsHgVA_V-QaZ1U-uXhO6KhBmdwCTKU8bLuZxrJmBtnXEDKxgdvyIf-kgW-B9ui97AG8JepAWEvbBhLyDs2_f58mvycMTyGzLtfi71W2CunXznkfIHKjuWOg
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Hybrid+Artificial+Intelligent+Systems&rft.au=Wojcikiewicz%2C+Wojciech&rft.au=Vidaurre%2C+Carmen&rft.au=Kawanabe%2C+Motoaki&rft.atitle=Improving+Classification+Performance+of+BCIs+by+Using+Stationary+Common+Spatial+Patterns+and+Unsupervised+Bias+Adaptation&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2011-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783642212215&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=34&rft.epage=41&rft_id=info:doi/10.1007%2F978-3-642-21222-2_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon