Improving Classification Performance of BCIs by Using Stationary Common Spatial Patterns and Unsupervised Bias Adaptation
Non-stationarities in EEG signals coming from electrode artefacts, muscular activity or changes of task involvement can negatively affect the classification accuracy of Brain-Computer Interface (BCI) systems. In this paper we investigate three methods to alleviate this: (1) Regularization of Common...
Saved in:
Published in | Hybrid Artificial Intelligent Systems pp. 34 - 41 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2011
|
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 3642212212 9783642212215 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-642-21222-2_5 |
Cover
Abstract | Non-stationarities in EEG signals coming from electrode artefacts, muscular activity or changes of task involvement can negatively affect the classification accuracy of Brain-Computer Interface (BCI) systems. In this paper we investigate three methods to alleviate this: (1) Regularization of Common Spatial Patterns (CSP) towards stationary subspaces in order to reduce the influence of artefacts. (2) Unsupervised adaptation of the classifier bias with the goal to account for systematic shifts of the features occurring for example in the transition from calibration to feedback session or with increasing fatigue of the subject. (3) Decomposition of the CSP projection matrix into a whitening and a rotation part and adaptation of the whitening matrix in order to reduce the influence of non-task related changes. We study all three approaches on a data set of 80 subjects and show that stationary features with bias adaptation significantly outperforms the other combinations. |
---|---|
AbstractList | Non-stationarities in EEG signals coming from electrode artefacts, muscular activity or changes of task involvement can negatively affect the classification accuracy of Brain-Computer Interface (BCI) systems. In this paper we investigate three methods to alleviate this: (1) Regularization of Common Spatial Patterns (CSP) towards stationary subspaces in order to reduce the influence of artefacts. (2) Unsupervised adaptation of the classifier bias with the goal to account for systematic shifts of the features occurring for example in the transition from calibration to feedback session or with increasing fatigue of the subject. (3) Decomposition of the CSP projection matrix into a whitening and a rotation part and adaptation of the whitening matrix in order to reduce the influence of non-task related changes. We study all three approaches on a data set of 80 subjects and show that stationary features with bias adaptation significantly outperforms the other combinations. |
Author | Kawanabe, Motoaki Vidaurre, Carmen Wojcikiewicz, Wojciech |
Author_xml | – sequence: 1 givenname: Wojciech surname: Wojcikiewicz fullname: Wojcikiewicz, Wojciech email: wojwoj@mail.tu-berlin.de organization: Bernstein Center for Computational Neuroscience, Berlin, Germany – sequence: 2 givenname: Carmen surname: Vidaurre fullname: Vidaurre, Carmen email: carmen.vidaurre@tu-berlin.de organization: Technical University of Berlin, Berlin, Germany – sequence: 3 givenname: Motoaki surname: Kawanabe fullname: Kawanabe, Motoaki email: nabe@first.fraunhofer.de organization: Fraunhofer Institute FIRST, Berlin, Germany |
BookMark | eNo1kMtOwzAQRQ0Uibb0C9j4Bwx-JE6ybCMelSpRqXRtOc4EBRo7skOl_D1uCxuPdebOaHRmaGKdBYQeGH1klGZPRZYTQWTCCWecx1elV2gRqYjsjPg1mjLJGBEiKW7Q7L_B-ARNqaCcFFki7tAshC9KKc8KPkXjuuu9O7b2E5cHHULbtEYPrbN4C75xvtPWAHYNXpXrgKsR78MpuxvOIe1HXLqui_FdH4k-4K0eBvA2YG1rvLfhpwd_bAPUeNXqgJe17i-z9-i20YcAi786R_uX54_yjWzeX9flckMCYzwlUhudijxvcl7VjaSsbjIJCaSUcwCQRlR5kktTCCoSCrWB-BG1NKnkhuaFmCN22Rt6H08HryrnvoNiVJ3EqqhQCRVdqbNFFcWKX22jal4 |
ContentType | Book Chapter |
Copyright | Springer-Verlag Berlin Heidelberg 2011 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2011 |
DOI | 10.1007/978-3-642-21222-2_5 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISBN | 9783642212222 3642212220 |
EISSN | 1611-3349 |
Editor | Kurzyński, Marek Woźniak, Michał Corchado, Emilio |
Editor_xml | – sequence: 1 givenname: Emilio surname: Corchado fullname: Corchado, Emilio email: escorchado@ubu.es – sequence: 2 givenname: Marek surname: Kurzyński fullname: Kurzyński, Marek email: marek.kurzynski@pwr.wroc.pl – sequence: 3 givenname: Michał surname: Woźniak fullname: Woźniak, Michał email: Michal.Wozniak@pwr.wroc.pl |
EndPage | 41 |
GroupedDBID | -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE ALMA_UNASSIGNED_HOLDINGS EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-s1125-6aca5388f82bdf601df76e4e5022eee6c3b8486c930340edce3033d6c562c0893 |
ISBN | 3642212212 9783642212215 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 19:47:04 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1125-6aca5388f82bdf601df76e4e5022eee6c3b8486c930340edce3033d6c562c0893 |
PageCount | 8 |
ParticipantIDs | springer_books_10_1007_978_3_642_21222_2_5 |
PublicationCentury | 2000 |
PublicationDate | 2011 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – year: 2011 text: 2011 |
PublicationDecade | 2010 |
PublicationPlace | Berlin, Heidelberg |
PublicationPlace_xml | – name: Berlin, Heidelberg |
PublicationSeriesSubtitle | Lecture Notes in Artificial Intelligence |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSubtitle | 6th International Conference, HAIS 2011, Wroclaw, Poland, May 23-25, 2011, Proceedings, Part II |
PublicationTitle | Hybrid Artificial Intelligent Systems |
PublicationYear | 2011 |
Publisher | Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin Heidelberg |
RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Nierstrasz, Oscar Steffen, Bernhard Kittler, Josef Vardi, Moshe Y. Weikum, Gerhard Sudan, Madhu Naor, Moni Mitchell, John C. Terzopoulos, Demetri Pandu Rangan, C. Kanade, Takeo Hutchison, David Tygar, Doug |
RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David organization: Lancaster University, Lancaster, UK – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo organization: Carnegie Mellon University, Pittsburgh, USA – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef organization: University of Surrey, Guildford, UK – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. organization: Cornell University, Ithaca, USA – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann organization: ETH Zurich, Zurich, Switzerland – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. organization: Stanford University, Stanford, USA – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni organization: Weizmann Institute of Science, Rehovot, Israel – sequence: 8 givenname: Oscar surname: Nierstrasz fullname: Nierstrasz, Oscar organization: University of Bern, Bern, Switzerland – sequence: 9 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. organization: Indian Institute of Technology, Madras, India – sequence: 10 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard organization: University of Dortmund, Dortmund, Germany – sequence: 11 givenname: Madhu surname: Sudan fullname: Sudan, Madhu organization: Massachusetts Institute of Technology, USA – sequence: 12 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri organization: University of California, Los Angeles, USA – sequence: 13 givenname: Doug surname: Tygar fullname: Tygar, Doug organization: University of California, Berkeley, USA – sequence: 14 givenname: Moshe Y. surname: Vardi fullname: Vardi, Moshe Y. organization: Rice University, Houston, USA – sequence: 15 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard organization: Max-Planck Institute of Computer Science, Saarbrücken, Germany |
SSID | ssj0002792 ssj0000537738 |
Score | 1.3907102 |
Snippet | Non-stationarities in EEG signals coming from electrode artefacts, muscular activity or changes of task involvement can negatively affect the classification... |
SourceID | springer |
SourceType | Publisher |
StartPage | 34 |
SubjectTerms | adaptive classification Brain-Computer Interface Common Spatial Patterns stationary features |
Title | Improving Classification Performance of BCIs by Using Stationary Common Spatial Patterns and Unsupervised Bias Adaptation |
URI | http://link.springer.com/10.1007/978-3-642-21222-2_5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELW2ywV6AAoIyod84MQqKJs4bnrg0FZFbamqSnSr3iLbsaWASCqSVbX8L_4fM7aTeFuEVC5RNlptkvHb8fNk3gsh72UaS5YnMspLk0ZMxzISVpxjVGqUzIwStkH2jB8t2MlVdjWZ_A66lpad_Kh-_VVX8j-jCsdgXFEle4-RHX4UDsA-jC9sYYRhe4v8rpdZnU_hCsVWWF2vvAvE8WCv2a05kdvO22-q-l7pm0rZirH9rNVQC76sSoFOTb4H5McoEPsibkQtpCtgN10DjDOE2ViUsK_XxEtxkDoPFAlASPcPjlukuq5F4atrAMCOPVSoYM7Czm64h3Pr91k75-hF3S6vMZm1QIv3K9HO9kpxHTQPYJR1--nUPwg5azrbXzbr31XRp66wtmEVfmFto69tzv5h_WVlKCyBGThxutBeDQaZHtZKLnlql9w5WjamziLVJ2xfSXVTv7PgujOphH0kHNVMcC7YFtkG2djJ2ZQ82Ds8Ob0cSntokWNd7TwhQI9G9zDLXRJKjPpLTpwJ1HgLgzOWMz--dcY7z-stDbp4QjZRGkNRswLBfUomut4ij_tgUx_sLfIocLl8RlYDRug6RmiAEdoYihihckUtRuiIEeowQj1GaI8RChihIUYoYoSOGHlOFp8PLw6OIv_Gj6gF3p9FXCgBM3BuIHuUhsfz0uxwzXQGTFNrzVUqc5ZztQvEi8XYwAw7ackVsHgVA_V-QaZ1U-uXhO6KhBmdwCTKU8bLuZxrJmBtnXEDKxgdvyIf-kgW-B9ui97AG8JepAWEvbBhLyDs2_f58mvycMTyGzLtfi71W2CunXznkfIHKjuWOg |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Hybrid+Artificial+Intelligent+Systems&rft.au=Wojcikiewicz%2C+Wojciech&rft.au=Vidaurre%2C+Carmen&rft.au=Kawanabe%2C+Motoaki&rft.atitle=Improving+Classification+Performance+of+BCIs+by+Using+Stationary+Common+Spatial+Patterns+and+Unsupervised+Bias+Adaptation&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2011-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783642212215&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=34&rft.epage=41&rft_id=info:doi/10.1007%2F978-3-642-21222-2_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon |