General Architecture
As a first step of document understanding a digital image of the document to be analyzed or the trajectory of the pen used for writing needs to be captured. From this raw data the relevant document elements (e.g., text lines) need to be segmented. These are then subject to a number of pre-processing...
Saved in:
Published in | Markov Models for Handwriting Recognition pp. 9 - 17 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
London
Springer London
07.09.2011
|
Series | SpringerBriefs in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 9781447121879 1447121872 |
ISSN | 2191-5768 2191-5776 |
DOI | 10.1007/978-1-4471-2188-6_2 |
Cover
Loading…
Abstract | As a first step of document understanding a digital image of the document to be analyzed or the trajectory of the pen used for writing needs to be captured. From this raw data the relevant document elements (e.g., text lines) need to be segmented. These are then subject to a number of pre-processing steps that aim at reducing the variability in the appearance of the writing by applying a sequence of normalization operations. In order to be processed by a handwriting recognition system based on Markov models, text-line images and raw pen trajectories are then converted into a sequential representation—which is quite straight-forward for online data but requires some “trick” in the offline case. Based on the serialized data representation features are computed that characterize the local appearance of the script. These are fed into a Markov-model based decoder that produces a hypothesis for the segmentation and classification of the analyzed portion of handwritten text—usually as a sequence of word or character hypotheses. |
---|---|
AbstractList | As a first step of document understanding a digital image of the document to be analyzed or the trajectory of the pen used for writing needs to be captured. From this raw data the relevant document elements (e.g., text lines) need to be segmented. These are then subject to a number of pre-processing steps that aim at reducing the variability in the appearance of the writing by applying a sequence of normalization operations. In order to be processed by a handwriting recognition system based on Markov models, text-line images and raw pen trajectories are then converted into a sequential representation—which is quite straight-forward for online data but requires some “trick” in the offline case. Based on the serialized data representation features are computed that characterize the local appearance of the script. These are fed into a Markov-model based decoder that produces a hypothesis for the segmentation and classification of the analyzed portion of handwritten text—usually as a sequence of word or character hypotheses. |
Author | Fink, Gernot A. Plötz, Thomas |
Author_xml | – sequence: 1 givenname: Thomas surname: Plötz fullname: Plötz, Thomas email: thomas.ploetz@newcastle.ac.uk – sequence: 2 givenname: Gernot A. surname: Fink fullname: Fink, Gernot A. |
BookMark | eNo9j0tPAzEMhA0UibbsjRsX_kDATjavY1XRglSJC5yjJJuFQrWLNuX_k4jHXKyZsWx9C5gN45AArglvCVHfWW0YsbbVxDgZw5TjJ7CgGlSPpzDnZIlJrdUZNGX9r9N29t8pcwFNzu9YpAg5tXO42qYhTf5ws5ri2_6Y4vFrSpdw3vtDTs3vXMLL5v55_cB2T9vH9WrHMhHnzHjsfGwtoSmfEAX2ksjL1IUYZQxK2hSEkakP0gqjBaqgW4NR9R16HcQS6Odu_pz2w2uaXBjHj-wIXcV2hcORqySuYrqCLb4BNqpFcw |
ContentType | Book Chapter |
Copyright | Thomas Plötz 2011 |
Copyright_xml | – notice: Thomas Plötz 2011 |
DOI | 10.1007/978-1-4471-2188-6_2 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Computer Science |
EISBN | 1447121880 9781447121886 |
EISSN | 2191-5776 |
EndPage | 17 |
GroupedDBID | -T. 089 0D6 0DA 0E8 20A 38. 92K A4J AABBV AAJYQ AAMFE AATVQ ABBUY ABCYT ABFCV ABMNI ACBPT ACDTA ACDUY AECAB AECMQ AEGQK AEHEY AEJLV AEKFX AETDV AEZAY AHNNE ALMA_UNASSIGNED_HOLDINGS ANXAN ATJMZ AZZ BBABE BC- C9S C9V CZZ I4C IEZ MYL SBO TCUKC TPJZQ UZ6 Z7R Z7X Z81 Z83 Z84 Z85 Z88 |
ID | FETCH-LOGICAL-s1122-8a0dac491082180030f511a5edbcc5cb659eb385efb59387306b7480c6fd0a7b3 |
ISBN | 9781447121879 1447121872 |
ISSN | 2191-5768 |
IngestDate | Tue Jul 29 20:26:09 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1122-8a0dac491082180030f511a5edbcc5cb659eb385efb59387306b7480c6fd0a7b3 |
PageCount | 9 |
ParticipantIDs | springer_books_10_1007_978_1_4471_2188_6_2 |
PublicationCentury | 2000 |
PublicationDate | 20110907 |
PublicationDateYYYYMMDD | 2011-09-07 |
PublicationDate_xml | – month: 9 year: 2011 text: 20110907 day: 7 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationSeriesTitle | SpringerBriefs in Computer Science |
PublicationSeriesTitleAlternate | SpringerBriefs Computer Sci. |
PublicationTitle | Markov Models for Handwriting Recognition |
PublicationYear | 2011 |
Publisher | Springer London |
Publisher_xml | – name: Springer London |
SSID | ssj0000610214 ssj0000602596 |
Score | 1.38219 |
Snippet | As a first step of document understanding a digital image of the document to be analyzed or the trajectory of the pen used for writing needs to be captured.... |
SourceID | springer |
SourceType | Publisher |
StartPage | 9 |
SubjectTerms | Feature extraction Handwriting recognition [overview] Model decoding Pre-processing Segmentation free recognition Serialization System architecture |
Title | General Architecture |
URI | http://link.springer.com/10.1007/978-1-4471-2188-6_2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLZYuWwcxo9NsAHqYadVqdImjp1jQaAKAeIAE7fIduzLUCo1BST--n2O7dZQLuwSJVYUO-9Zz-89-30fIb-4VFjI1SihJuVJLsoykWakkwzTQ44Ny1hXlXZ1XUzv8ot7eh9o2X11yUIO1cu7dSX_o1W0Qa-2SvYDml1-FA24h35xhYZxfeP8vk6zeoah-d_ZU0dm9tCBKgymoqmfLUhRd6LOHwxabbPfPNhd8ZOiY3CNTwZZ9SEkdSnyeTNbDCbDeCp5aOrBJNp0cNbIoiS3y-TgCZ5M6-oIHVdEMB1xbsEmS21F01puceCoRV6FngjE2GhsucpXFgvWD0pnjidnqOM2FlvJMlpuXeXmmiFfnd1AiIueEnTFk6LCavuJcdojm5Ozi8s_y3RaWsB588iB7rnjLLfUgmFQXVmfH_Q4oH2Fn1gCUjnM4Tedrm2Td97H7TbZshUpfVsqApnukA3d7JKvPn7oexG3aApiD2275EuEN7lH9rwm-7Emv5G787Pb02niaTGSFs4x1i-R1kLl8PM4xmettIHXLKiupVJUyYKWWmacaiNpmXGY8EKynKeqMHUqmMy-k14za_Q-6RsqjIVXEnUxzilnUlPcGgGHRajaiAPyO_x3ZSd6WwWUawipGlVWSJUVUgUh_fjIyz_J59WEOyS9xfxRH8G9W8hjr9p_IB5CRA |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Markov+Models+for+Handwriting+Recognition&rft.au=Pl%C3%B6tz%2C+Thomas&rft.au=Fink%2C+Gernot+A.&rft.atitle=General+Architecture&rft.series=SpringerBriefs+in+Computer+Science&rft.date=2011-09-07&rft.pub=Springer+London&rft.isbn=9781447121879&rft.issn=2191-5768&rft.eissn=2191-5776&rft.spage=9&rft.epage=17&rft_id=info:doi/10.1007%2F978-1-4471-2188-6_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-5768&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-5768&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-5768&client=summon |