融合多源信息的降雨入渗边坡概率反分析及可靠度预测

P642.22; 概率反分析是推断不确定土体参数统计特征的重要手段,可以使边坡可靠度评估更接近工程实际.然而目前的概率反分析很少使用多源信息(包括监测数据、观测信息和边坡服役记录),因为这通常涉及数千个随机变量和高维似然函数的评估.因此融合多源信息对空间变异土体参数进行概率反分析进而预测降雨条件下的边坡可靠度是一项具有挑战性的难题.文章将改进的基于子集模拟的贝叶斯更新(mBUS)方法与自适应条件抽样(aCS)算法相结合,构建了空间变异土体参数概率反分析和边坡可靠度预测的框架,并以某一公路边坡为例验证了该框架的有效性.研究结果表明:通过融合多源信息所获得的土体参数后验统计特征与现场观测结果基本吻...

Full description

Saved in:
Bibliographic Details
Published in中国地质灾害与防治学报 Vol. 35; no. 1; pp. 28 - 36
Main Authors 揭鸿鹄, 蒋水华, 常志璐, 黄劲松, 黄发明
Format Journal Article
LanguageChinese
Published 南昌大学工程建设学院,江西南昌 330031%南昌大学工程建设学院,江西南昌 330031 2024
南昌大学资源与环境学院,江西南昌 330031
Subjects
Online AccessGet full text
ISSN1003-8035
DOI10.16031/j.cnki.issn.1003-8035.202309029

Cover

Abstract P642.22; 概率反分析是推断不确定土体参数统计特征的重要手段,可以使边坡可靠度评估更接近工程实际.然而目前的概率反分析很少使用多源信息(包括监测数据、观测信息和边坡服役记录),因为这通常涉及数千个随机变量和高维似然函数的评估.因此融合多源信息对空间变异土体参数进行概率反分析进而预测降雨条件下的边坡可靠度是一项具有挑战性的难题.文章将改进的基于子集模拟的贝叶斯更新(mBUS)方法与自适应条件抽样(aCS)算法相结合,构建了空间变异土体参数概率反分析和边坡可靠度预测的框架,并以某一公路边坡为例验证了该框架的有效性.研究结果表明:通过融合多源信息所获得的土体参数后验统计特征与现场观测结果基本吻合;用更新后的土体参数预测得到2004年9月12日该边坡在暴雨工况下的失效概率为23.1%,符合实际边坡失稳情况,说明在此框架下可以充分利用多源信息解决高维概率反分析问题.
AbstractList P642.22; 概率反分析是推断不确定土体参数统计特征的重要手段,可以使边坡可靠度评估更接近工程实际.然而目前的概率反分析很少使用多源信息(包括监测数据、观测信息和边坡服役记录),因为这通常涉及数千个随机变量和高维似然函数的评估.因此融合多源信息对空间变异土体参数进行概率反分析进而预测降雨条件下的边坡可靠度是一项具有挑战性的难题.文章将改进的基于子集模拟的贝叶斯更新(mBUS)方法与自适应条件抽样(aCS)算法相结合,构建了空间变异土体参数概率反分析和边坡可靠度预测的框架,并以某一公路边坡为例验证了该框架的有效性.研究结果表明:通过融合多源信息所获得的土体参数后验统计特征与现场观测结果基本吻合;用更新后的土体参数预测得到2004年9月12日该边坡在暴雨工况下的失效概率为23.1%,符合实际边坡失稳情况,说明在此框架下可以充分利用多源信息解决高维概率反分析问题.
Abstract_FL Probabilistic inverse-analysis is an essential approach to infer statistical characteristics of uncertain soil parameters,making the slope reliability assessment closer to engineering reality.However,current probabilistic inverse analysis rarely integrates multi-source information,including monitored data,field observation information,and slope survival records.Conducting the probabilistic inverse-analysis of spatially varying soil parameters and slope reliability prediction under rainfalls by integrating the multi-source information is a challenging issue due to the involvement of thousands of random variables and the evaluation of high-dimensional likelihood functions.In this paper,a modified Bayesian updating with subset simulation(mBUS)method is combined with adaptive conditional sampling(aCS)algorithm to establish a framework for probabilistic inverse analysis of spatially variable soil parameters and reliability prediction of slopes.The effectiveness of this framework is validated using a highway slope as a case study.The research results show that the posterior statistical characteristics of soil parameters obtained by integrating multi-source information are in good agreement with field observation results.Additionally,the probability of slope failure under heavy rainfall on September 12,2004 with the updated soil parameters is 23.1%,which is in line with the actual slope instability.Within this framework,multi-source information can be fully utilized to address high-dimensional probabilistic inverse analysis problems.
Author 揭鸿鹄
蒋水华
常志璐
黄劲松
黄发明
AuthorAffiliation 南昌大学工程建设学院,江西南昌 330031%南昌大学工程建设学院,江西南昌 330031;南昌大学资源与环境学院,江西南昌 330031
AuthorAffiliation_xml – name: 南昌大学工程建设学院,江西南昌 330031%南昌大学工程建设学院,江西南昌 330031;南昌大学资源与环境学院,江西南昌 330031
Author_FL CHANG Zhilu
JIE Honghu
HUANG Faming
HUANG Jinsong
JIANG Shuihua
Author_FL_xml – sequence: 1
  fullname: JIE Honghu
– sequence: 2
  fullname: JIANG Shuihua
– sequence: 3
  fullname: CHANG Zhilu
– sequence: 4
  fullname: HUANG Jinsong
– sequence: 5
  fullname: HUANG Faming
Author_xml – sequence: 1
  fullname: 揭鸿鹄
– sequence: 2
  fullname: 蒋水华
– sequence: 3
  fullname: 常志璐
– sequence: 4
  fullname: 黄劲松
– sequence: 5
  fullname: 黄发明
BookMark eNo9j09LAkEchudgkJnfo0NuM_MbZ3eOIZWB0KXOMvtnTIsRWqLaW2ElhektMpSMkm6egvJQX6ZZ3W-RUXR64T28z_ssoJSu6wChJYItwjGQlZrl6b2qVQ1DbRGMIedgyFsUU8ACU5FC6f92HmXDsOpi4AwYUJpGxWm_ZTpN89SNx52vz0F8Opp0G8ldK7l_MefP8dvt9OPd9Abx8Gxyc2naLdO8iPsd074y7VHSezDjYfLYiF-vF9GckvthkP3LDNpZX9suFHOlrY3NwmopFxJsz14o2xbYkUwIcCgThBNPudx3HazAswMGxPfcvC-4Iky6IDHjjAfMVwDUl3nIoOXf3SOpldSVcq1-eKBnxHJU8aNo90RFx-5MnuEfa_gGERBu7A
ClassificationCodes P642.22
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16031/j.cnki.issn.1003-8035.202309029
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Probabilistic inverse-analysis and reliability prediction of rainfall-induced landslides for slope with multi-source information
EndPage 36
ExternalDocumentID zgdzzhyfzxb202401003
GrantInformation_xml – fundername: (国家自然科学基金); (国家自然科学基金); (国家自然科学基金); (国家自然科学基金); (江西省自然科学基金); (江西省自然科学基金)
  funderid: (国家自然科学基金); (国家自然科学基金); (国家自然科学基金); (国家自然科学基金); (江西省自然科学基金); (江西省自然科学基金)
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s1073-8f77908a49938249161cfb6db80f3c7e431dcb5d96f14ab3a04646e4df332da53
ISSN 1003-8035
IngestDate Thu May 29 04:07:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords probabilistic inverse-analysis
Bayesian updating
reliability analysis
概率反分析
spatial variability
空间变异性
降雨诱发滑坡
rainfall-induced landslide
可靠度分析
贝叶斯更新
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1073-8f77908a49938249161cfb6db80f3c7e431dcb5d96f14ab3a04646e4df332da53
PageCount 9
ParticipantIDs wanfang_journals_zgdzzhyfzxb202401003
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle 中国地质灾害与防治学报
PublicationTitle_FL The Chinese Journal of Geological Hazard and Control
PublicationYear 2024
Publisher 南昌大学工程建设学院,江西南昌 330031%南昌大学工程建设学院,江西南昌 330031
南昌大学资源与环境学院,江西南昌 330031
Publisher_xml – name: 南昌大学资源与环境学院,江西南昌 330031
– name: 南昌大学工程建设学院,江西南昌 330031%南昌大学工程建设学院,江西南昌 330031
SSID ssib036434322
ssj0002925265
ssib000271184
ssib051368647
ssib006568360
ssib000502065
ssib002258245
ssib000862046
Score 2.33985
Snippet P642.22;...
SourceID wanfang
SourceType Aggregation Database
StartPage 28
Title 融合多源信息的降雨入渗边坡概率反分析及可靠度预测
URI https://d.wanfangdata.com.cn/periodical/zgdzzhyfzxb202401003
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3Na9RAFA-lgngRRcVvenBAkNRkkklmjpPdLEXQUwu9lSS7aUVYwW5B96ZULUptb2KlxYoWbz0J2oP-M2bb_S9872W2m9KC1ZOXZXbyPn7vvTAzb5J5sawbwguTQPHM5rmf2z5MSXbq-b6dShiQ4RZwWvQVhbv3gokp_860mB4ZXaieLumk41n3yHMl_xJV6IO44inZv4jsvlDogDbEF34hwvB7rBizWDIVM1lnsWDKYVJiQ_tMaRYHLNLYGfssajDtYo90mW6wOEQC6bNYMaWIHRoR08QuQYIgdhAeooooZpEiFXUjR4MojnIkaA-Jq2FgAAYZIA0AQ-3lJW0aqF2RHLoECEEU9GhOeEApkEXVFTPhl0yXNkYsKhs1FjmEzSfYIZoGONF8QOsZLoCH6oCMk3DOooho6qQ3QGBaDG466miQKoXcEYEF06U_JAGnANaIxDmoHg2rg6YhiSBmciaIQB-GyKScIYlCILJk1gYdeCWKq7swfLj_arSgrADtkTUTaR1W7AF9IQUvRKdIMhX0gJcBNvolrhBT7MHvvEa2uEw1iIxAH1J3y_NwZGZc_C9QKtMpvvkonbIgzWC-Nf-q44qZPGVlGVaWxTk0wQdkKszwWfvBfVIyvq9knGNCrRyzhXawjHp3ttntzj3Ju49TjJ_jUo3gEzwMXVHZiTEP4yHtrqyyBeRUB6pC4kccqlUGheSVh_OQIslKFT4voNPb-1mEcL1ADqr44YKRK44fqaD3MowpJ62bA2tv_8FWOm3YzpP2bGVhPHnGOm0y2jFdDk9nrZHu3DlrYm9juVhdKj6t9XZWf_3c7D3d3l1b7L9b7r__Ujz_3Pv2du_H92J9s7f1bPfNy2JluVh60dtYLVZeFSvb_fUPxc5W_-Ni7-vr89ZUI56sTdjmoy32vAvLBVvmWMFUJj4kPuAVyD7dLE-DZiqd3MvCFiQszSwVTRXkrp-kXoLvVgQtv5l7Hm8mwrtgjbYftlsXrbGWkAFWCkjcvIV1IVWWyFQkqRBcpjxML1nMWD5jBuX5maPCfPmYdFesU9guN1ivWqOdRwuta5BydNLrdIP8BlvS2_Q
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%9E%8D%E5%90%88%E5%A4%9A%E6%BA%90%E4%BF%A1%E6%81%AF%E7%9A%84%E9%99%8D%E9%9B%A8%E5%85%A5%E6%B8%97%E8%BE%B9%E5%9D%A1%E6%A6%82%E7%8E%87%E5%8F%8D%E5%88%86%E6%9E%90%E5%8F%8A%E5%8F%AF%E9%9D%A0%E5%BA%A6%E9%A2%84%E6%B5%8B&rft.jtitle=%E4%B8%AD%E5%9B%BD%E5%9C%B0%E8%B4%A8%E7%81%BE%E5%AE%B3%E4%B8%8E%E9%98%B2%E6%B2%BB%E5%AD%A6%E6%8A%A5&rft.au=%E6%8F%AD%E9%B8%BF%E9%B9%84&rft.au=%E8%92%8B%E6%B0%B4%E5%8D%8E&rft.au=%E5%B8%B8%E5%BF%97%E7%92%90&rft.au=%E9%BB%84%E5%8A%B2%E6%9D%BE&rft.date=2024&rft.pub=%E5%8D%97%E6%98%8C%E5%A4%A7%E5%AD%A6%E5%B7%A5%E7%A8%8B%E5%BB%BA%E8%AE%BE%E5%AD%A6%E9%99%A2%2C%E6%B1%9F%E8%A5%BF%E5%8D%97%E6%98%8C+330031%25%E5%8D%97%E6%98%8C%E5%A4%A7%E5%AD%A6%E5%B7%A5%E7%A8%8B%E5%BB%BA%E8%AE%BE%E5%AD%A6%E9%99%A2%2C%E6%B1%9F%E8%A5%BF%E5%8D%97%E6%98%8C+330031&rft.issn=1003-8035&rft.volume=35&rft.issue=1&rft.spage=28&rft.epage=36&rft_id=info:doi/10.16031%2Fj.cnki.issn.1003-8035.202309029&rft.externalDocID=zgdzzhyfzxb202401003
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgdzzhyfzxb%2Fzgdzzhyfzxb.jpg