基于MOLA的水库群实时防洪多目标优化调度模型

TV697; 水库群实时防洪优化调度作为一种重要的非工程措施,可以通过较少的投入降低洪水灾害带来的损失,起到流域防洪减灾作用.考虑了各水库自身安全和下游防洪点安全,以下游防洪控制断面最大过水流量最小、各水库最高水位最低为目标函数,建立了水库群实时防洪多目标优化调度模型;引入"滤波算子",提出一种改进多目标利希滕贝格算法(Multi-Objective Lichtenberg Algorithm,MOLA),进行模型求解,得到水库群实时防洪调度多目标方案集,增强优化调度解在防洪调度实际应用中的可操作性;最后,提出一种基于层次聚类和Pareto前沿物理意义的综合筛选法,对Par...

Full description

Saved in:
Bibliographic Details
Published in中国农村水利水电 no. 1; pp. 117 - 134
Main Authors 李国智, 陈娟, 钟平安, 张璐, 徐琦, 冯小蔓, 曹端祥
Format Journal Article
LanguageChinese
Published 河海大学水文水资源学院,江苏 南京 210098 2024
Subjects
Online AccessGet full text
ISSN1007-2284
DOI10.12396/znsd.230877

Cover

Loading…
Abstract TV697; 水库群实时防洪优化调度作为一种重要的非工程措施,可以通过较少的投入降低洪水灾害带来的损失,起到流域防洪减灾作用.考虑了各水库自身安全和下游防洪点安全,以下游防洪控制断面最大过水流量最小、各水库最高水位最低为目标函数,建立了水库群实时防洪多目标优化调度模型;引入"滤波算子",提出一种改进多目标利希滕贝格算法(Multi-Objective Lichtenberg Algorithm,MOLA),进行模型求解,得到水库群实时防洪调度多目标方案集,增强优化调度解在防洪调度实际应用中的可操作性;最后,提出一种基于层次聚类和Pareto前沿物理意义的综合筛选法,对Pareto前沿上的众多调度方案集进行聚集和筛选,选取有限代表解供决策者进行选择,增加防洪决策的聚焦性.研究以淮河史灌河水系为例,进行了水库群实时防洪多目标优化调度模型的应用研究,结果表明:基于改进MOLA的水库群实时防洪多目标优化调度模型计算效率高、实用性较强;采用梯度分析法定量分析了鲇鱼山水库最高水位、梅山水库最高水位、蒋家集断面最大过水流量之间的多目标互馈关系,结果表明梅山水库水位变化对蒋家集断面的组合流量影响更为显著,梅山水库可作为史灌河流域防洪风险调控的优先考虑对象.研究成果可为水库群实时防洪调度提供技术支持和决策参考.
AbstractList TV697; 水库群实时防洪优化调度作为一种重要的非工程措施,可以通过较少的投入降低洪水灾害带来的损失,起到流域防洪减灾作用.考虑了各水库自身安全和下游防洪点安全,以下游防洪控制断面最大过水流量最小、各水库最高水位最低为目标函数,建立了水库群实时防洪多目标优化调度模型;引入"滤波算子",提出一种改进多目标利希滕贝格算法(Multi-Objective Lichtenberg Algorithm,MOLA),进行模型求解,得到水库群实时防洪调度多目标方案集,增强优化调度解在防洪调度实际应用中的可操作性;最后,提出一种基于层次聚类和Pareto前沿物理意义的综合筛选法,对Pareto前沿上的众多调度方案集进行聚集和筛选,选取有限代表解供决策者进行选择,增加防洪决策的聚焦性.研究以淮河史灌河水系为例,进行了水库群实时防洪多目标优化调度模型的应用研究,结果表明:基于改进MOLA的水库群实时防洪多目标优化调度模型计算效率高、实用性较强;采用梯度分析法定量分析了鲇鱼山水库最高水位、梅山水库最高水位、蒋家集断面最大过水流量之间的多目标互馈关系,结果表明梅山水库水位变化对蒋家集断面的组合流量影响更为显著,梅山水库可作为史灌河流域防洪风险调控的优先考虑对象.研究成果可为水库群实时防洪调度提供技术支持和决策参考.
Abstract_FL As an important non-engineering measure,the optimal operation of reservoir flood control can reduce the loss caused by flood di-sasters with little investment and plays a key role in flood control and disaster reduction.In this paper,considering the safety of the reservoirs themselves and the safety of the downstream flood control section,a multi-objective optimal model for real-time flood control operation of reservoirs is established with the objective function of minimizing the maximum flow of the downstream flood control section and minimizing the maximum water level of each reservoir.Based on the"filter operator",an improved multi-objective Lichtenberg algorithm(MOLA)is proposed,which is used to solve the multi-objective model,and the real-time flood control operation schemes of the reservoirs are obtained,to enhance the practicability of operation solutions.Finally,a comprehensive screening method based on hierarchical clustering and the phys-ical meaning of Pareto front is proposed to screen the scheduling schemes on the Pareto front and select limited ones for the scheduler,to in-crease the focus of decision-making.Taking the Shiguanhe flood control system of the Huaihe River Basin as an example,this paper applies the multi-objective optimal model for real-time flood control operation of reservoirs.The result shows that the proposed model based on the improved multi-objective Lichtenberg algorithm has high computational efficiency and strong applicability.The gradient analysis method is used to quantitatively analyze the mutual feedback relationship between the maximum water level of Nianyushan Reservoir,the maximum wa-ter level of Meishan Reservoir,and the maximum flow of Jiangjiaji flood control section.The results show that the water level change of Meis-han Reservoir has a more significant impact on the flow of Jiangjiaji section,and the Meishan Reservoir is a priority in flood risk control of Shiguanhe River Basin.The research results can provide decision-making support for real-time flood control operation of reservoirs.
Author 李国智
陈娟
徐琦
张璐
钟平安
冯小蔓
曹端祥
AuthorAffiliation 河海大学水文水资源学院,江苏 南京 210098
AuthorAffiliation_xml – name: 河海大学水文水资源学院,江苏 南京 210098
Author_FL CHEN Juan
XU Qi
ZHONG Ping-an
LI Guo-zhi
FENG Xiao-man
ZHANG Lu
CAO Duan-xiang
Author_FL_xml – sequence: 1
  fullname: LI Guo-zhi
– sequence: 2
  fullname: CHEN Juan
– sequence: 3
  fullname: ZHONG Ping-an
– sequence: 4
  fullname: ZHANG Lu
– sequence: 5
  fullname: XU Qi
– sequence: 6
  fullname: FENG Xiao-man
– sequence: 7
  fullname: CAO Duan-xiang
Author_xml – sequence: 1
  fullname: 李国智
– sequence: 2
  fullname: 陈娟
– sequence: 3
  fullname: 钟平安
– sequence: 4
  fullname: 张璐
– sequence: 5
  fullname: 徐琦
– sequence: 6
  fullname: 冯小蔓
– sequence: 7
  fullname: 曹端祥
BookMark eNotjbtKA0EYRqeIYIzpfAmLjf8_O7uzU1iE4A1W0mgdZi8TlDABBxHSKlgoNoKGCFEhiFiEIMFiEZ8ms6tv4YJWBz4O31khFd3XKSFrCA2krvA3BtokDepCwHmFVBGAO5QGbJnUjTmKALCcBMcq2bSP2SK72W-HzWJ0kc_mNrstviZ2Os7vP36G7_n8zU5GxcM0f7pcfA7t9d337NxmL_nrsx1frZIlJXsmrf-zRg63tw5au07Y3tlrNUPHIPhlWiqMGHM9L-GKe2kqBUrFPI9FGFNFlfBlyiLp-yJG5DIBP8GAQqlRoYRya2T97_dMaiV1t3PcPz3RZbEz6OrY9ExCgTJAQO7-AszqYLU
ClassificationCodes TV697
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12396/znsd.230877
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Multi-objective Optimal Model for Real-time Flood Control Operation of Reservoirs Based on MOLA
EndPage 134
ExternalDocumentID zgncslsd202401017
GrantInformation_xml – fundername: 国家自然科学基金
  funderid: (51909062)
GroupedDBID -04
2B.
4A8
5XA
5XD
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
U1G
U5M
ID FETCH-LOGICAL-s1067-2af1b44355d7f75eea91af4554b1c2f2f96ae4ba669c117ad06d1820a9129f9f3
ISSN 1007-2284
IngestDate Thu May 29 04:09:01 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords 层次聚类
实时防洪调度
MOLA
multi-objective Lichtenberg algorithm
multi-objective decision making
水库群
hierar-chical clustering
reservoirs
多目标决策
real-time flood control operation
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1067-2af1b44355d7f75eea91af4554b1c2f2f96ae4ba669c117ad06d1820a9129f9f3
PageCount 18
ParticipantIDs wanfang_journals_zgncslsd202401017
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle 中国农村水利水电
PublicationTitle_FL China Rural Water and Hydropower
PublicationYear 2024
Publisher 河海大学水文水资源学院,江苏 南京 210098
Publisher_xml – name: 河海大学水文水资源学院,江苏 南京 210098
SSID ssib001100971
ssj0037555
ssib051368504
ssib046786273
Score 2.3402472
Snippet TV697;...
SourceID wanfang
SourceType Aggregation Database
StartPage 117
Title 基于MOLA的水库群实时防洪多目标优化调度模型
URI https://d.wanfangdata.com.cn/periodical/zgncslsd202401017
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxNBdGjrRQ_iJ35TxDmV6O7szu7MwcNssqGI1UsLvZX9mnqQCCZe4lHBg-JF0FKhKhQRD6VI8RDEX9NN9F_43uw02VAP1csy--bNm_eRybz3knlDyA3tpJnONHhumkGAwnyOJW9TiFp5yAqHpZ4pu7h0L1hc8e-s8tWZ2af10yW99GbW_-u5kv-xKsDArnhK9h8sOyYKAGiDfeEJFobnkWxMY05lm0aKxj4-Rbx0_y68hFTCi0_jgEYOjXzEg27pYVcUU2UgKqYyRhwJwIDGkkpBI2ZG-VQpg-MjKSQYIT50KYeK0MzXRHzAEdCA4QLnEp6dSwUGWVDlGi5jKqK6I2woQG_L9EY0Mg0BzDQNSy0q3Sn-BSDLGgRYAgr84ANjB4m4Rg8gkk4SEUZCiYRQMAGam-phqEpkHsZ4Vj9CTlA4SgzS48yA69TzJWySKTUsMkMCGjAotHpUVaNlVWPFCFB3qNAxROAoazywmVMbZfhXDJaF6XUNxwI0S0V7wSiphcasPgyquQCBtiPr-w5mjBmrbsubWnLVvuJWB1yti-JW-d9Dux_zJGZi-p1ujn_wF_aCnOl64v31TtZ92M1RN1hgMJwlx1gYuryWjzC-tGvqix28w4YKwe_E1-UuXl2AsXzl9nghN1cMjyWxp0yQp1s1jszhuI5OOus1P275FDlpA7B5Va2m02Sm_-AMOVEry3mW3C4_DPYHr3EtjTafD3f3ysGb0c_tcmdr-O77741vw72v5fbm6P3O8OOL_R8b5au3v3aflYPPwy-fyq2X58hKO15uLjbsNSONLtZPbLBEu6kPYQPPQx3yokikm2gf_OzUzZhmWgZJ4adJEMgM7JDkTpDjtQeAxqSW2jtP5jqPOsUFMq-LQuRJkuFv8-AZp9LL81RyD_zDRGqfXSTXrfBr9muku3bIHpeOgnSZHMd2lQy8QuZ6j58UV8E97qXXjBn_AK-Qiz8
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EMOLA%E7%9A%84%E6%B0%B4%E5%BA%93%E7%BE%A4%E5%AE%9E%E6%97%B6%E9%98%B2%E6%B4%AA%E5%A4%9A%E7%9B%AE%E6%A0%87%E4%BC%98%E5%8C%96%E8%B0%83%E5%BA%A6%E6%A8%A1%E5%9E%8B&rft.jtitle=%E4%B8%AD%E5%9B%BD%E5%86%9C%E6%9D%91%E6%B0%B4%E5%88%A9%E6%B0%B4%E7%94%B5&rft.au=%E6%9D%8E%E5%9B%BD%E6%99%BA&rft.au=%E9%99%88%E5%A8%9F&rft.au=%E9%92%9F%E5%B9%B3%E5%AE%89&rft.au=%E5%BC%A0%E7%92%90&rft.date=2024&rft.pub=%E6%B2%B3%E6%B5%B7%E5%A4%A7%E5%AD%A6%E6%B0%B4%E6%96%87%E6%B0%B4%E8%B5%84%E6%BA%90%E5%AD%A6%E9%99%A2%2C%E6%B1%9F%E8%8B%8F+%E5%8D%97%E4%BA%AC+210098&rft.issn=1007-2284&rft.issue=1&rft.spage=117&rft.epage=134&rft_id=info:doi/10.12396%2Fznsd.230877&rft.externalDocID=zgncslsd202401017
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgncslsd%2Fzgncslsd.jpg