融合局部特征的多知识库常识问答模型

TP18; 当前的多知识库融合常识推理模型的输入和特征组合的方式过于简单,导致模型丢失了一些与问题和答案相关的重要信息,限制了融合外部知识的常识推理模型的效果.另外,在进行常识问答的任务时,预训练语言模型输出的问题和答案表示存在的向量各向异性问题没有得到解决.这些问题都是导致常识问答推理性能不够高的因素.针对以上问题,提出了一种基于局部特征融合的多知识库常识问答模型,改进外部知识库和问答文本的融合方式.模型将局部的问题和答案特征融入预训练语言模型全局特征,以丰富模型的特征信息,并在预测层结合了多种维度的特征进行预测;模型对于待匹配的问题和答案句子表示进行了白化处理,然后执行匹配任务.通过白化操...

Full description

Saved in:
Bibliographic Details
Published in计算机工程与应用 Vol. 60; no. 12; pp. 129 - 135
Main Authors 田雨晴, 汪春梅, 袁非牛
Format Journal Article
LanguageChinese
Published 上海师范大学 信息与机电工程学院,上海 201418 15.06.2024
Subjects
Online AccessGet full text
ISSN1002-8331
DOI10.3778/j.issn.1002-8331.2303-0080

Cover

Abstract TP18; 当前的多知识库融合常识推理模型的输入和特征组合的方式过于简单,导致模型丢失了一些与问题和答案相关的重要信息,限制了融合外部知识的常识推理模型的效果.另外,在进行常识问答的任务时,预训练语言模型输出的问题和答案表示存在的向量各向异性问题没有得到解决.这些问题都是导致常识问答推理性能不够高的因素.针对以上问题,提出了一种基于局部特征融合的多知识库常识问答模型,改进外部知识库和问答文本的融合方式.模型将局部的问题和答案特征融入预训练语言模型全局特征,以丰富模型的特征信息,并在预测层结合了多种维度的特征进行预测;模型对于待匹配的问题和答案句子表示进行了白化处理,然后执行匹配任务.通过白化操作,模型增强了句子表示的各向同性,提升了句子向量的表征能力;还探索了不同预训练编码器(如:ALBERT、ELECTRA)在模型上的效果,以加强对知识文本的特征抽取能力,并证明了模型的稳定性.实验结果证明,在相同BERT-base编码器的实验下,模型的准确率达到78.6%,相较于基线模型,准确率提升了3.5个百分点;在ELECTRA-base编码器的实验下,模型的准确率达到80.1%.
AbstractList TP18; 当前的多知识库融合常识推理模型的输入和特征组合的方式过于简单,导致模型丢失了一些与问题和答案相关的重要信息,限制了融合外部知识的常识推理模型的效果.另外,在进行常识问答的任务时,预训练语言模型输出的问题和答案表示存在的向量各向异性问题没有得到解决.这些问题都是导致常识问答推理性能不够高的因素.针对以上问题,提出了一种基于局部特征融合的多知识库常识问答模型,改进外部知识库和问答文本的融合方式.模型将局部的问题和答案特征融入预训练语言模型全局特征,以丰富模型的特征信息,并在预测层结合了多种维度的特征进行预测;模型对于待匹配的问题和答案句子表示进行了白化处理,然后执行匹配任务.通过白化操作,模型增强了句子表示的各向同性,提升了句子向量的表征能力;还探索了不同预训练编码器(如:ALBERT、ELECTRA)在模型上的效果,以加强对知识文本的特征抽取能力,并证明了模型的稳定性.实验结果证明,在相同BERT-base编码器的实验下,模型的准确率达到78.6%,相较于基线模型,准确率提升了3.5个百分点;在ELECTRA-base编码器的实验下,模型的准确率达到80.1%.
Abstract_FL The input and feature combination of the current commonsense reasoning model based on multi-knowledge base fusion is too simple,resulting in the loss of some important information related to questions and answers,which limits the effect of the commonsense reasoning model integrating external knowledge.In addition,during the commonsense question and answer task,the problem of vector anisotropy in the output of the pre-training language model and the answer representation has not been solved.These problems are the factors that lead to the poor reasoning performance of commonsense question answering.To solve the above problems,this paper proposes a multi-knowledge base common-sense question answering model based on local feature fusion,which improves the fusion of external knowledge bases and question-answer texts.The model integrates the local question and answer features into the global features of the pre-trained language model to enrich the feature information of the model,and combines the features of multiple dimensions in the prediction layer for prediction.The model for the questions and answers to be matched.Sentence representations are whitened and then the matching task is performed.Through the whitening operation,the model enhances the isotropy of the sentence representation and improves the representation ability of the sentence vector.This paper also explores the effect of different pre-trained encoders(such as,ALBERT,ELECTRA)on the model to strengthen knowledge.The feature extraction ability of text is strengtened,and the stability of the model is proved.The experimental results show that under the same BERT-base encoder experiment,the accuracy of the model reaches 78.6%,which is 3.5 percentage points higher than the baseline model.In the experiment of ELECTRA-base encoder,the accuracy reaches 80.1%.
Author 汪春梅
袁非牛
田雨晴
AuthorAffiliation 上海师范大学 信息与机电工程学院,上海 201418
AuthorAffiliation_xml – name: 上海师范大学 信息与机电工程学院,上海 201418
Author_FL YUAN Feiniu
WANG Chunmei
TIAN Yuqing
Author_FL_xml – sequence: 1
  fullname: TIAN Yuqing
– sequence: 2
  fullname: WANG Chunmei
– sequence: 3
  fullname: YUAN Feiniu
Author_xml – sequence: 1
  fullname: 田雨晴
– sequence: 2
  fullname: 汪春梅
– sequence: 3
  fullname: 袁非牛
BookMark eNo9jT1LQzEYRjNUsNb-CTeHXN_k7W2SUYpfUHDRudzEpPQiKRhE7qYoooggKAgdKoJCFxW36uC_ibf9FxYUp-dwhvMskIrve0vIEoMEhZAredILwScMgFOJyBKOgBRAQoVU_-08qYfQ05AyFKlAVSU4GV7Hm4v4fjw9HZWXH_HrpBycxadB-fA8eTuPn7dxPJ7B9P61fLn7Hj3G4dUimXPZfrD1v62R3fW1ndYmbW9vbLVW2zQwaHLaQMOFVIw7oZW00lqtubFgBexlyjmdSmHBKFTaWC6azGlEkBKFNIKlDmtk-bd7lHmX-W4n7x8e-NljJw951xRFwYE3GAfG8Qdxw12I
ClassificationCodes TP18
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3778/j.issn.1002-8331.2303-0080
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Multi-Knowledge Base Common Sense Question Answering Model Based on Local Feature Fusion
EndPage 135
ExternalDocumentID jsjgcyyy202412012
GroupedDBID -0Y
2B.
4A8
5XA
5XJ
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
PSX
TCJ
TGT
U1G
U5S
ID FETCH-LOGICAL-s1062-43c278912f7b98e8eebb2ce0e70da9ffb587e0c939bce2761fb33088378c715f3
ISSN 1002-8331
IngestDate Thu May 29 04:10:55 EDT 2025
IsPeerReviewed false
IsScholarly false
Issue 12
Keywords whitening of sentence representations
common sense question and answering
局部特征融合预测
常识问答
local feature fusion prediction
知识库融合
knowledge base fusion
向量白化
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1062-43c278912f7b98e8eebb2ce0e70da9ffb587e0c939bce2761fb33088378c715f3
PageCount 7
ParticipantIDs wanfang_journals_jsjgcyyy202412012
PublicationCentury 2000
PublicationDate 2024-06-15
PublicationDateYYYYMMDD 2024-06-15
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-15
  day: 15
PublicationDecade 2020
PublicationTitle 计算机工程与应用
PublicationTitle_FL Computer Engineering and Applications
PublicationYear 2024
Publisher 上海师范大学 信息与机电工程学院,上海 201418
Publisher_xml – name: 上海师范大学 信息与机电工程学院,上海 201418
SSID ssib051375739
ssib001102935
ssj0000561668
ssib023646291
ssib057620132
Score 1.9565256
Snippet TP18;...
SourceID wanfang
SourceType Aggregation Database
StartPage 129
Title 融合局部特征的多知识库常识问答模型
URI https://d.wanfangdata.com.cn/periodical/jsjgcyyy202412012
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxUxcKntRQ_iJ35TxJzK1k32I8kx-94-ilgvttBbeZtmKz08wbaH9qQoYhFBUBB6qAgKvah4qx78N-tr_4Uzs_vePmyFKjyWMElmJjObN5NlZuJ5t7qh6DoRLPkyTgo_KrT2u9YWvlgSYO5cEXOLB8XZe8nMfHRnIV4YO7E1ErW0vpZP280j80r-R6sAA71iluw_aHaIFADQBv3CEzQMz2PpmGWK6YypNstipgOmFDZSjuELmWYqZAYgkinNUk1dMJgjRBumIoSYCNsI6TATI0LTYSqhwYbpkBoKf02XZloyk-Es02Ya8CRIyHBiA0ikoy4vTcyol2bBXBivW4gfkUuiKxGDSlkWIS2VDRiIiLcIegevRg1IaYk6pSUCPlhi1AxJUArGUI8iAsCiYNW9PdUQRQBOWNrIdiUonY5-CBERBmxVqaD06g4YJNQpsV9JSJGEVAulXsnVUBdIyCRTNK1DQkiQKEiyWelQGtXC4qPEUiMibjVyLlqHWZkSGFA7amjIEg2y1WpLVN2sMNhxYsSu8PqzUOWi8KrCy5_WL5RSkfVDCtNDChjrH_p4NGhs_jASc2V1ZdlubGygQDkwCd7MhJASIx4mTHv27v3GtwZXVDe-NV48kIim0FLMQxnLpsQsnGNFUJcFrQvtJzypU1NrzqoiwMj27b8zTdl0vaLbWx5x_ObOeKfrE9ukqbbfWW9s88E579RIHc_zXri_86p8_aL89vjg6W5_63v580l_-1n5cbv__tP-1-fljzfl3h40Dt596X9--2v3Q7nz8oI338nmWjN-fRuJv8oDSi20mDXORSFzrZxyLs-FdYGTwVJXF0UeK-kCq0OdWydkwos8DMGGh1JZyeMivOiN9x723CVv0gaugENtkCtdRJFwOTr54FhbaS0c-N1l72a95MX632Z18ZCirhxn0FXvZLNVrnnja4_W3XXwotfyG7V-fwNaR5FI
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%9E%8D%E5%90%88%E5%B1%80%E9%83%A8%E7%89%B9%E5%BE%81%E7%9A%84%E5%A4%9A%E7%9F%A5%E8%AF%86%E5%BA%93%E5%B8%B8%E8%AF%86%E9%97%AE%E7%AD%94%E6%A8%A1%E5%9E%8B&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B%E4%B8%8E%E5%BA%94%E7%94%A8&rft.au=%E7%94%B0%E9%9B%A8%E6%99%B4&rft.au=%E6%B1%AA%E6%98%A5%E6%A2%85&rft.au=%E8%A2%81%E9%9D%9E%E7%89%9B&rft.date=2024-06-15&rft.pub=%E4%B8%8A%E6%B5%B7%E5%B8%88%E8%8C%83%E5%A4%A7%E5%AD%A6+%E4%BF%A1%E6%81%AF%E4%B8%8E%E6%9C%BA%E7%94%B5%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E4%B8%8A%E6%B5%B7+201418&rft.issn=1002-8331&rft.volume=60&rft.issue=12&rft.spage=129&rft.epage=135&rft_id=info:doi/10.3778%2Fj.issn.1002-8331.2303-0080&rft.externalDocID=jsjgcyyy202412012
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjgcyyy%2Fjsjgcyyy.jpg