IDFE:面向物联网设备识别的指纹深度提取方法
TP391; 传统物联网设备指纹提取方法通常将流量中的隐私数据用于生成设备指纹并且采用手工设计特征的方式,在形成安全隐患的同时限制了模型的性能.针对上述问题,提出一种基于设备行为的物联网设备指纹深度提取方法(IoT device deep fingerprint extraction,IDFE).IDFE将网络流量pcap文件划分为多个会话(sessions),并提取非隐私信息构建会话信息矩阵,设计了会话信息矩阵不同信息序列之间的依赖关系和会话数据包之间的时序依赖关系建模方法和融合方法,利用设计的全卷积Transformer提取融合后的会话特征矩阵中设备行为特征并生成设备指纹.在UNSW和Yo...
Saved in:
Published in | 计算机工程与应用 Vol. 60; no. 17; pp. 117 - 128 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | Chinese |
Published |
国网上海市电力公司,上海 200122%南京航空航天大学 计算机科学与技术学院/人工智能学院,南京 211106%国网上海市电力公司 信息通信公司,上海 200072
01.09.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1002-8331 |
DOI | 10.3778/j.issn.1002-8331.2306-0161 |
Cover
Abstract | TP391; 传统物联网设备指纹提取方法通常将流量中的隐私数据用于生成设备指纹并且采用手工设计特征的方式,在形成安全隐患的同时限制了模型的性能.针对上述问题,提出一种基于设备行为的物联网设备指纹深度提取方法(IoT device deep fingerprint extraction,IDFE).IDFE将网络流量pcap文件划分为多个会话(sessions),并提取非隐私信息构建会话信息矩阵,设计了会话信息矩阵不同信息序列之间的依赖关系和会话数据包之间的时序依赖关系建模方法和融合方法,利用设计的全卷积Transformer提取融合后的会话特征矩阵中设备行为特征并生成设备指纹.在UNSW和YourThings两个公开数据集上进行了广泛的实验,验证了该方法的有效性. |
---|---|
AbstractList | TP391; 传统物联网设备指纹提取方法通常将流量中的隐私数据用于生成设备指纹并且采用手工设计特征的方式,在形成安全隐患的同时限制了模型的性能.针对上述问题,提出一种基于设备行为的物联网设备指纹深度提取方法(IoT device deep fingerprint extraction,IDFE).IDFE将网络流量pcap文件划分为多个会话(sessions),并提取非隐私信息构建会话信息矩阵,设计了会话信息矩阵不同信息序列之间的依赖关系和会话数据包之间的时序依赖关系建模方法和融合方法,利用设计的全卷积Transformer提取融合后的会话特征矩阵中设备行为特征并生成设备指纹.在UNSW和YourThings两个公开数据集上进行了广泛的实验,验证了该方法的有效性. |
Abstract_FL | Traditional IoT device fingerprint extraction methods usually use the private data in traffic to generate device fingerprints and adopt the method of manually designing features.It also limits the performance of the model while creating security risks.Aiming at the above problems,the IoT device deep fingerprint extraction(IDFE)method based on network traffic is proposed.IDFE first divides the network traffic pcap file into multiple sessions,and extracts the non-private information to build the session information matrix.Then it designs the modeling method and fusion method of the depen-dency between the different information sequences of the session information matrix and the temporal dependency between the session data packets.Finally,the designed full convolution transformer is used to extract the device behavior features in the fused session feature matrix and generate the device fingerprint. |
Author | 卢士达 黄君 位雪银 李静 唐跃中 钱李烽 顾荣斌 |
AuthorAffiliation | 国网上海市电力公司,上海 200122%南京航空航天大学 计算机科学与技术学院/人工智能学院,南京 211106%国网上海市电力公司 信息通信公司,上海 200072 |
AuthorAffiliation_xml | – name: 国网上海市电力公司,上海 200122%南京航空航天大学 计算机科学与技术学院/人工智能学院,南京 211106%国网上海市电力公司 信息通信公司,上海 200072 |
Author_FL | LU Shida WEI Xueyin QIAN Lifeng HUANG Jun LI Jing GU Rongbin TANG Yuezhong |
Author_FL_xml | – sequence: 1 fullname: TANG Yuezhong – sequence: 2 fullname: LU Shida – sequence: 3 fullname: QIAN Lifeng – sequence: 4 fullname: WEI Xueyin – sequence: 5 fullname: GU Rongbin – sequence: 6 fullname: HUANG Jun – sequence: 7 fullname: LI Jing |
Author_xml | – sequence: 1 fullname: 唐跃中 – sequence: 2 fullname: 卢士达 – sequence: 3 fullname: 钱李烽 – sequence: 4 fullname: 位雪银 – sequence: 5 fullname: 顾荣斌 – sequence: 6 fullname: 黄君 – sequence: 7 fullname: 李静 |
BookMark | eNo9jbtKA0EUQKeIYIz5CTuLXe-d2ddoJTHRQMBG6zCP3ZBFNuAgsqUgRkFIAppCsBERRFDEQhLQv9mHf6GgWB04xTlLpJIMkpCQFQSb-X6wFtt9YxIbAagVMIY2ZeBZgB5WSPXfLpK6MX0JLjLf9Rmvko32Vqu5_nV7l40nxcVjeXJVfEzK58_sfli-nGXnT8XNaX45LOaz_P01mz_ko3E2mubTWf52vUwWInFgwvofa2S_1dxr7Fid3e12Y7NjGQQPLepw6WrOpeI0cJQOPSoAItcNUQQChdQ68IBryalkQiFHnylGwdGKCkkpq5HV3-6xSCKR9Lrx4Ogw-Tl2YxP3VJqmFKiDPiCyb7-uYR8 |
ClassificationCodes | TP391 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3778/j.issn.1002-8331.2306-0161 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | IDFE:Fingerprint Deep Extraction Method for IoT Device Identification |
EndPage | 128 |
ExternalDocumentID | jsjgcyyy202417011 |
GrantInformation_xml | – fundername: 国家电网有限公司总部科技项目 funderid: (5108-202218280A-2-152-XG) |
GroupedDBID | -0Y 2B. 4A8 5XA 5XJ 92H 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CUBFJ CW9 PSX TCJ TGT U1G U5S |
ID | FETCH-LOGICAL-s1061-249b5d99bc9284cde62a00f55e1a8a1abdd8609db92b3ac19173c3204dc2ab223 |
ISSN | 1002-8331 |
IngestDate | Thu May 29 04:10:55 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 17 |
Keywords | behavior features 安全隐患 信息融合 information fusion device fingerprint IoT devices 设备指纹 security risks 物联网设备 行为特征 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1061-249b5d99bc9284cde62a00f55e1a8a1abdd8609db92b3ac19173c3204dc2ab223 |
PageCount | 12 |
ParticipantIDs | wanfang_journals_jsjgcyyy202417011 |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 计算机工程与应用 |
PublicationTitle_FL | Computer Engineering and Applications |
PublicationYear | 2024 |
Publisher | 国网上海市电力公司,上海 200122%南京航空航天大学 计算机科学与技术学院/人工智能学院,南京 211106%国网上海市电力公司 信息通信公司,上海 200072 |
Publisher_xml | – name: 国网上海市电力公司,上海 200122%南京航空航天大学 计算机科学与技术学院/人工智能学院,南京 211106%国网上海市电力公司 信息通信公司,上海 200072 |
SSID | ssib051375739 ssib001102935 ssj0000561668 ssib023646291 ssib057620132 |
Score | 1.9729553 |
Snippet | TP391; 传统物联网设备指纹提取方法通常将流量中的隐私数据用于生成设备指纹并且采用手工设计特征的方式,在形成安全隐患的同时限制了模型的性能.针对上述问题,提出一种基于设备行为的物联网设备指纹深度提取方法(IoT device deep fingerprint... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 117 |
Title | IDFE:面向物联网设备识别的指纹深度提取方法 |
URI | https://d.wanfangdata.com.cn/periodical/jsjgcyyy202417011 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFB9qe9GD-InfFDF4KFsnmZl86CmzO0sV68UWeiubmd1KDyvY9tDeBLEKQlvQHgQvIoIIiniQFvS_2d36X_heJrszdlWqeBmyb34veR_ZzEtIXjzvCsQgJmoFtNJKRVYJwyavSGmiSkRFluL3gNlMTNN3-NRseGsumhsZu1ratbSybCbTtV-eK_kXrwIN_IqnZP_Cs4NKgQBl8C88wcPwPJCPb9bqCWBJooiqEc1IEhHlE0VJIohURCuSSIgViQqREtfsK0l0QuIEwRoiSWEpdSI5UiSUYwQrTSRwcSKrFgPsmsQKKTGUKYKBornF1LFdZIeCpcDTgQOS32_ZD4GdANoKCQUlLL6KtWGdQIzsK5AcJAlJDIXENZcrAk892IJrlQ5t-xK5ZeCYikyTVrK-gXRgNZRogjgpIGBDZvXiaExs0dYVl2oJ0YRQEWJjonPDA4SX105YONgclvd2K2CMrIUPcq20NZDVGdUDCnPqARFl1siIBRC76uwLMFYdrgFzQ1LGCIuctmjX0LqoanuBtAIL7BRo6QHF9gLsKXnBiqLBWHzij54SCFV0gC55iqNc0ndg6FoFBuyl0A-s7oT7yekc3zrhAmuwYcbqsHoTDD6lPneq_1dTT1j-urUBx38SaqPs9iBdenVgD_mitMxObZzQP0vo4oT83ov-eChKX33qfuUBJM2zHeyPTQIhpI1NsIXJQQt4EgPX9PIrCfblfl9cWlxIV1dXse_ixQn0kDfGhMD9KGO6Nn37bjHzgYmCKmY-eC0EZ0UarIgGIhJFAuAIYiDfJW111yBwyt3BYSdZnqIZxb72e6HtWcd2q9FeKIXlM8e8o24-Pa7zwfG4N7J274R3pJRl9aR3A4fJ699fve5sbvWevtt7-Lz3dWvvw7fOm_W9j487T973Xj7qPlvv7e50v3zq7L7tbmx2Nra72zvdzy9OebP1ZKY6VXF3xlSWcHGrwkJlokwpkyoIvNOsyVnD91tR1KQN2aANk2WS-yozipmgkeJqVZAGzA-zlDUMzJVOe6Pt--3mGW88SKO0adKMmqYMVRqaVgrxSlMKExnKDD3rXXaqz7tvwtL8kMPOHQR03jtcjE4XvNHlByvNizDXWTaXnJ9_ADU460g |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IDFE%3A%E9%9D%A2%E5%90%91%E7%89%A9%E8%81%94%E7%BD%91%E8%AE%BE%E5%A4%87%E8%AF%86%E5%88%AB%E7%9A%84%E6%8C%87%E7%BA%B9%E6%B7%B1%E5%BA%A6%E6%8F%90%E5%8F%96%E6%96%B9%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B%E4%B8%8E%E5%BA%94%E7%94%A8&rft.au=%E5%94%90%E8%B7%83%E4%B8%AD&rft.au=%E5%8D%A2%E5%A3%AB%E8%BE%BE&rft.au=%E9%92%B1%E6%9D%8E%E7%83%BD&rft.au=%E4%BD%8D%E9%9B%AA%E9%93%B6&rft.date=2024-09-01&rft.pub=%E5%9B%BD%E7%BD%91%E4%B8%8A%E6%B5%B7%E5%B8%82%E7%94%B5%E5%8A%9B%E5%85%AC%E5%8F%B8%2C%E4%B8%8A%E6%B5%B7+200122%25%E5%8D%97%E4%BA%AC%E8%88%AA%E7%A9%BA%E8%88%AA%E5%A4%A9%E5%A4%A7%E5%AD%A6+%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2F%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E5%AD%A6%E9%99%A2%2C%E5%8D%97%E4%BA%AC+211106%25%E5%9B%BD%E7%BD%91%E4%B8%8A%E6%B5%B7%E5%B8%82%E7%94%B5%E5%8A%9B%E5%85%AC%E5%8F%B8+%E4%BF%A1%E6%81%AF%E9%80%9A%E4%BF%A1%E5%85%AC%E5%8F%B8%2C%E4%B8%8A%E6%B5%B7+200072&rft.issn=1002-8331&rft.volume=60&rft.issue=17&rft.spage=117&rft.epage=128&rft_id=info:doi/10.3778%2Fj.issn.1002-8331.2306-0161&rft.externalDocID=jsjgcyyy202417011 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjgcyyy%2Fjsjgcyyy.jpg |