基于CEEMDAN-VSSLMS的滚动轴承故障诊断

TP391.9%TH133.33; 针对传统机械轴承故障诊断模型易受系统噪声干扰、特征识别效率低等问题,提出一种基于信号固有模式深度建模分析的轴承故障诊断方法.首先,将采集到的轴承振动信号进行噪声自适应完全经验模态分解(CEEMDAN),获得不同时间尺度的局部特征信号,使用相关系数判别并去除虚假模态分量,再利用可变步长最小均方算法(VSSLMS)对剩余IMF分量降噪并进行重构;然后,将降噪后的振动信号进行离散小波变换(DWT)得到时频谱图,并利用形态学开运算进行特征增强;最后利用改进GoogLeNet网络模型对特征图进行训练,通过Soft-max分类器完成特征归类,从而实现轴承故障诊断.将提出...

Full description

Saved in:
Bibliographic Details
Published in计算机集成制造系统 Vol. 30; no. 3; pp. 1138 - 1148
Main Authors 江莉, 向世召
Format Journal Article
LanguageChinese
Published 西安建筑科技大学信息与控制工程学院,陕西 西安 710055 31.03.2024
Subjects
Online AccessGet full text
ISSN1006-5911
DOI10.13196/j.cims.2023.IM09

Cover

Abstract TP391.9%TH133.33; 针对传统机械轴承故障诊断模型易受系统噪声干扰、特征识别效率低等问题,提出一种基于信号固有模式深度建模分析的轴承故障诊断方法.首先,将采集到的轴承振动信号进行噪声自适应完全经验模态分解(CEEMDAN),获得不同时间尺度的局部特征信号,使用相关系数判别并去除虚假模态分量,再利用可变步长最小均方算法(VSSLMS)对剩余IMF分量降噪并进行重构;然后,将降噪后的振动信号进行离散小波变换(DWT)得到时频谱图,并利用形态学开运算进行特征增强;最后利用改进GoogLeNet网络模型对特征图进行训练,通过Soft-max分类器完成特征归类,从而实现轴承故障诊断.将提出的故障诊断方法应用于不同工况下的轴承故障数据集,试验结果表明,所提方法在噪声干扰下具有较高的诊断精度.
AbstractList TP391.9%TH133.33; 针对传统机械轴承故障诊断模型易受系统噪声干扰、特征识别效率低等问题,提出一种基于信号固有模式深度建模分析的轴承故障诊断方法.首先,将采集到的轴承振动信号进行噪声自适应完全经验模态分解(CEEMDAN),获得不同时间尺度的局部特征信号,使用相关系数判别并去除虚假模态分量,再利用可变步长最小均方算法(VSSLMS)对剩余IMF分量降噪并进行重构;然后,将降噪后的振动信号进行离散小波变换(DWT)得到时频谱图,并利用形态学开运算进行特征增强;最后利用改进GoogLeNet网络模型对特征图进行训练,通过Soft-max分类器完成特征归类,从而实现轴承故障诊断.将提出的故障诊断方法应用于不同工况下的轴承故障数据集,试验结果表明,所提方法在噪声干扰下具有较高的诊断精度.
Abstract_FL Aiming at the problems that the traditional mechanical bearing fault diagnosis model is easy to be disturbed by system noise and low efficiency of feature recognition,a bearing fault diagnosis method based on deep modeling a-nalysis of signal inherent mode was proposed.The collected bearing vibration signals were subjected to Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)to obtain local characteristic signals of different time scales.Correlation coefficients were used to identify and remove false intrinsic mode function.The re-maining IMF components were denoised and reconstructed by Variable Step-Size Least Mean Square algorithm(VSSLMS).Then,the vibration signal after noise reduction was obtained by Discrete Wavelet Transform(DWT),and the feature was enhanced by morphological operation.The improved GoogLeNet network model was used to train the feature map,and the feature classification was completed by Softmax classifier,so as to realize the bearing fault diagnosis.The proposed fault diagnosis method was applied to the bearing fault data set under different work-ing conditions,and the test results showed that the diagnosis accuracy was higher under noise interference.
Author 向世召
江莉
AuthorAffiliation 西安建筑科技大学信息与控制工程学院,陕西 西安 710055
AuthorAffiliation_xml – name: 西安建筑科技大学信息与控制工程学院,陕西 西安 710055
Author_FL JIANG Li
XIANG Shizhao
Author_FL_xml – sequence: 1
  fullname: JIANG Li
– sequence: 2
  fullname: XIANG Shizhao
Author_xml – sequence: 1
  fullname: 江莉
– sequence: 2
  fullname: 向世召
BookMark eNotjzFLw0AYhm-oYK39Af4FIen33eW79MYSoxYaHaKu5ZJepEFT8BSlsw52cNMhCK4u4uJUEf-MjfVfGNDp5Vmeh3eNNYpJYRjbQHBRoJKd3E3Hp9blwIXbj0A1WBMBpEMKcZW1rR0nNZIUPlGTdRZP86_5XRCG0VZvzzmK40EUf5fX1Xu5mD0vP96q28_q_uanfFy-zqqHl3W2kukTa9r_22KH2-FBsOsM9nf6QW_gWARSjlFK-yAyyEacexwTkaYCyAc14jIVUqHfTbxMGJkkRH5XGvJQE_GENDeIosU2_7yXush0cTzMJxdnRV0c5jbP0-n06rx-6IEArsQvOZxS0w
ClassificationCodes TP391.9%TH133.33
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.13196/j.cims.2023.IM09
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Rolling bearing fault diagnosis based on CEEMDAN-VSSLMS
EndPage 1148
ExternalDocumentID jsjjczzxt202403029
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CDYEO
PSX
TCJ
ID FETCH-LOGICAL-s1059-e99a703f0fd22421b3cc305709d26c369178b4f3e6bb55786e541a552b5a2e113
ISSN 1006-5911
IngestDate Thu May 29 04:00:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords GoogLeNet model
empirical mode decomposition
离散小波变换
最小均方算法
经验模态分解
discrete wavelet transform
轴承故障诊断
GoogLeNet模型
bearing fault diagnosis
least mean square algorithm
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1059-e99a703f0fd22421b3cc305709d26c369178b4f3e6bb55786e541a552b5a2e113
PageCount 11
ParticipantIDs wanfang_journals_jsjjczzxt202403029
PublicationCentury 2000
PublicationDate 2024-03-31
PublicationDateYYYYMMDD 2024-03-31
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-31
  day: 31
PublicationDecade 2020
PublicationTitle 计算机集成制造系统
PublicationTitle_FL Computer Integrated Manufacturing Systems
PublicationYear 2024
Publisher 西安建筑科技大学信息与控制工程学院,陕西 西安 710055
Publisher_xml – name: 西安建筑科技大学信息与控制工程学院,陕西 西安 710055
SSID ssib006563755
ssib023646381
ssib001102950
ssib051375755
ssib023167363
ssib036438063
ssib000459500
ssib002258428
Score 2.410436
Snippet TP391.9%TH133.33;...
SourceID wanfang
SourceType Aggregation Database
StartPage 1138
Title 基于CEEMDAN-VSSLMS的滚动轴承故障诊断
URI https://d.wanfangdata.com.cn/periodical/jsjjczzxt202403029
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR09bxMx1OrHwoJAgPhWJfBUXXvns8_2eJf4VFDTJS2qxFDdV2gjESSSSigzDHRggyFCYmVBLExFiD9DQ_kXvOe4yUE7FJbTi9-79-F35_d8sZ8JuR9kpc8qwT2MBx5XPPQypjteWeIEo9BlYItVtzaitS3-cFtsz80_rq1a2h_kK8XwzH0l_-NVaAO_4i7Zf_DslCk0AAz-hSt4GK7n8jE1guqUJjE1HK_KNIxpNeMN71G7vd5qUyOphmZOTUSTBGG4Q8U0VtQomjRpYlFK0yRFQANWUKORUjeQJk6RHlERdaUbuyfCAWtoHKAUALS0ZA2rDnBIqIosc0W1b-WCxAhRyqexj3clIWqFAOg2XWJslQ3QMJCgDFV6hhHISwfWXoU6Id-UugKS7usF4yfb-dzzZlUV1kaBqoK9AIBQVBWUb1qWAEgLRGiysjrHHBsRaNI4smJTazLQBNg5E0VAS2wxjthZCiIkykXOQJPU-ED_aBozeMAdDD1_ouTyaXWXsTrSpNCwiyD4iUZoF0FciHF_Pe3Vv0DYeBEEk9o2LvfAyemZcQ0HShvYir2nWGSehSsPWr6eBfHp0spuv9sthsMXA-xtGMGZnieLTEpcw7AYN1vr7Xo2r0WtOiNkgkyL-rZoyE5rs1NI_UM528bMsIhCrXobHkUAo_k0XMDPUPkzvAjgbmnPIZ52kltngOat_m2c3UbX62S9J7WMb_MSueimakvx5L27TOaGu1fI6tGHwx-Hb_58z36OXo6_jo4OPh5_-zJ-_X389tWv0fvjzwfjd5-ukq3UbDbWPHfoiNfHqYZXaZ1BFOz4nZLhcok8LAqIidLXJYuKMNKBVDnvhFWU5wLCXQQDXZAJwXKRsQr8eY0s9J71qutkSQZVIWVZcdnJORayDHWZZZrhmXCcq-wGuecM3HGDSn_ntPtunovqFrkwe71uk4XB8_3qDqTLg_yuc_tvG_-D0A
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ECEEMDAN-VSSLMS%E7%9A%84%E6%BB%9A%E5%8A%A8%E8%BD%B4%E6%89%BF%E6%95%85%E9%9A%9C%E8%AF%8A%E6%96%AD&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E9%9B%86%E6%88%90%E5%88%B6%E9%80%A0%E7%B3%BB%E7%BB%9F&rft.au=%E6%B1%9F%E8%8E%89&rft.au=%E5%90%91%E4%B8%96%E5%8F%AC&rft.date=2024-03-31&rft.pub=%E8%A5%BF%E5%AE%89%E5%BB%BA%E7%AD%91%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E4%B8%8E%E6%8E%A7%E5%88%B6%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E9%99%95%E8%A5%BF+%E8%A5%BF%E5%AE%89+710055&rft.issn=1006-5911&rft.volume=30&rft.issue=3&rft.spage=1138&rft.epage=1148&rft_id=info:doi/10.13196%2Fj.cims.2023.IM09&rft.externalDocID=jsjjczzxt202403029
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjjczzxt%2Fjsjjczzxt.jpg