基于卷积神经网络和Transformer的视频行人再识别

TP391; 为了解决视频行人再识别领域仅使用卷积神经网络进行行人特征提取效果不佳的问题,提出一种基于卷积神经网络和Transformer的ResTNet(ResNet and Transformer network)网络模型.ResTNet利用ResNet50网络得到局部特征,令中间层输出作为Transformer的先验知识输入.在Transformer分支中不断缩小特征图尺寸,扩大感受野,充分挖掘局部特征之间的关系,生成行人的全局特征,同时利用移位窗口方法减少模型计算量.在大规模MARS数据集上,Rank-1和mAP分别达到 86.8%和 80.3%,比基准分别增加了 3.8%和 3.3%...

Full description

Saved in:
Bibliographic Details
Published in河南理工大学学报(自然科学版) Vol. 42; no. 6; pp. 149 - 156
Main Authors 赵彦如, 牛东杰, 孙东红, 杨蕙萌
Format Journal Article
LanguageChinese
Published 河南理工大学 机械与动力工程学院,河南 焦作 454000 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract TP391; 为了解决视频行人再识别领域仅使用卷积神经网络进行行人特征提取效果不佳的问题,提出一种基于卷积神经网络和Transformer的ResTNet(ResNet and Transformer network)网络模型.ResTNet利用ResNet50网络得到局部特征,令中间层输出作为Transformer的先验知识输入.在Transformer分支中不断缩小特征图尺寸,扩大感受野,充分挖掘局部特征之间的关系,生成行人的全局特征,同时利用移位窗口方法减少模型计算量.在大规模MARS数据集上,Rank-1和mAP分别达到 86.8%和 80.3%,比基准分别增加了 3.8%和 3.3%,在 2个小规模数据集上也取得了良好效果.在几大数据集上的大量实验表明,本文方法能增强行人识别的鲁棒性,有效提高行人再识别的准确率.
AbstractList TP391; 为了解决视频行人再识别领域仅使用卷积神经网络进行行人特征提取效果不佳的问题,提出一种基于卷积神经网络和Transformer的ResTNet(ResNet and Transformer network)网络模型.ResTNet利用ResNet50网络得到局部特征,令中间层输出作为Transformer的先验知识输入.在Transformer分支中不断缩小特征图尺寸,扩大感受野,充分挖掘局部特征之间的关系,生成行人的全局特征,同时利用移位窗口方法减少模型计算量.在大规模MARS数据集上,Rank-1和mAP分别达到 86.8%和 80.3%,比基准分别增加了 3.8%和 3.3%,在 2个小规模数据集上也取得了良好效果.在几大数据集上的大量实验表明,本文方法能增强行人识别的鲁棒性,有效提高行人再识别的准确率.
Abstract_FL To solve the problem of poor effect of person feature extraction using only convolutional neural network in the field of video person re-identification,a network model ResTNet(ResNet and Transformer Network)based on convolutional neural network and Transformer was proposed.ResNet50 network was used to obtain local features and the output of its middle layer was input to Transformer as prior knowledge in ResTNet.In the Transformer branch,the size of the feature map was continuously reduced,the field of per-ception was expanded,and the relationship among local features was fully explored to generate the global features of pedestrians,while the model computation was decreased with the shift window method.The Rank-1 and mAP on the large-scale MARS dataset reached 86.8%and 80.3%,respectively,which were 3.8%and 3.3%higher than the benchmark.Meanwhile,excellent performance was also achieved on the two small-scale datasets.In this paper,not only the Transformer model was successfully applied to the field of video person re-identification,but also extensive experiments on several large datasets showed that the proposed ResTNet network could enhance the robustness of the recognition and improve the accuracy of person re-identification effectively.
Author 牛东杰
赵彦如
孙东红
杨蕙萌
AuthorAffiliation 河南理工大学 机械与动力工程学院,河南 焦作 454000
AuthorAffiliation_xml – name: 河南理工大学 机械与动力工程学院,河南 焦作 454000
Author_FL YANG Huimeng
NIU Dongjie
SUN Donghong
ZHAO Yanru
Author_FL_xml – sequence: 1
  fullname: ZHAO Yanru
– sequence: 2
  fullname: NIU Dongjie
– sequence: 3
  fullname: SUN Donghong
– sequence: 4
  fullname: YANG Huimeng
Author_xml – sequence: 1
  fullname: 赵彦如
– sequence: 2
  fullname: 牛东杰
– sequence: 3
  fullname: 孙东红
– sequence: 4
  fullname: 杨蕙萌
BookMark eNo9j71Lw0AAxW-oYK39LxxcEu8juY9FkOIXFFzqXO6SS2nUCySI1VmCQ1upo4iiIB0cOgop_jcNF_8LA4q84fF-w3u8DdAwidEAbCHoIoo43YndwJwN68CIIxhnLoYYIQwhIg3Q_MfroJ1lQwVRLUIgboLd8qVYFdNy8mnnC_v-bJf39mtml0_lw7iXSpNFSXqhU_t4W83z77dZ9TpeFUWZT6pFXt59bIK1SJ5nuv3nLXB6sN_rHDndk8Pjzl7XyRD0haP90NOUKBQETEGlMOdMhFxTj0gOhR-EnHmRj5WgTEAUcqIw9jzlh5IyrgRpge3f3itpImkG_Ti5TE292I9vBqPrkar_EkghEuQHUe5h3w
ClassificationCodes TP391
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16186/j.cnki.1673-9787.2021120013
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Video person re-identification based on convolutional neural network and Transformer
EndPage 156
ExternalDocumentID jzgxyxb202306019
GrantInformation_xml – fundername: (国家自然科学基金); (河南省科技攻关计划项目); (河南理工大学光电传感与智能测控河南省工程实验室开放课题)
  funderid: (国家自然科学基金); (河南省科技攻关计划项目); (河南理工大学光电传感与智能测控河南省工程实验室开放课题)
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s1059-e5d4e63b1cc7b0bb28879d8e643a8095cd874f52b967901d83b2244b5da678b93
ISSN 1673-9787
IngestDate Thu May 29 04:07:54 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Keywords 卷积神经网络
Transformer
global fea-ture
视频行人再识别
video person re-identification
convolutional neural network
local feature
全局特征
局部特征
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1059-e5d4e63b1cc7b0bb28879d8e643a8095cd874f52b967901d83b2244b5da678b93
PageCount 8
ParticipantIDs wanfang_journals_jzgxyxb202306019
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationTitle 河南理工大学学报(自然科学版)
PublicationTitle_FL Journal of Henan Polytechnic University(Natural Science)
PublicationYear 2023
Publisher 河南理工大学 机械与动力工程学院,河南 焦作 454000
Publisher_xml – name: 河南理工大学 机械与动力工程学院,河南 焦作 454000
SSID ssib010103302
ssj0003314027
ssib006704847
ssib051373601
ssib036434603
ssib031741050
ssib005319289
ssib002423915
ssib011070700
ssib008679455
ssib006595874
Score 2.3417714
Snippet TP391; 为了解决视频行人再识别领域仅使用卷积神经网络进行行人特征提取效果不佳的问题,提出一种基于卷积神经网络和Transformer的ResTNet(ResNet and Transformer...
SourceID wanfang
SourceType Aggregation Database
StartPage 149
Title 基于卷积神经网络和Transformer的视频行人再识别
URI https://d.wanfangdata.com.cn/periodical/jzgxyxb202306019
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxQxdCgV1IsoKn5ToTmVqTOZJJNchMl0liLoqYXeynxt_YAV7BZqz1I8tEo9iigK0oOHHoUt_psuW_-F72XTmWhFamEZsm9e3ufM5L2QvHjeNA8LGtNa-KXoch9rSPl5HtY-y7ulrHhZ0Qj3Oz98JOYX2YMlvjQxec5ZtbTWL2bLjb_uKzmNVwEGfsVdsv_h2YYoAKAN_oUreBiuJ_IxyThRHaITkjG8ygwhco7omGQxSeDXMQ1Ay7ChNZEGoueICi1EpYYOJTJdOApjwZFwUwFJRjKJlKQgmSIJNf0AEgK6ZYv8OSIAZ7zVMcgAgbZ2o1-SCaIp0ZEVUxkxVWDxtZEUGglDjtiYI4lwGsAiMTigdIr0gZ2EXgnSAVG1sHqjkE0vuKUM8rhXM_WBvTXHHzJvWAET2qKYzkobVaWxlSAKLBy0KIaRUg5KjDZJHCqmT2LkVdzgSqN36s660MhuPzx6T05nrxnDLjVuEegxHVjR7PORGElMAxVrCMUIl9qxnEJRgQJNj4syY22OeMw8UOkMFloMAmegE3Hkq9gGO3YkZNR5491hLRyXlbURUjguBX9s8MWjF8zoW_aePZltOMyC_SCqx2SjDTqapaBPN1bWX64X1OTCARbwPUMh46PO7IiNJPEog9-GDuoclIBlMaWTyYgYhiYnU8a6kqzdgh3i8SZO5TucBQmcSpUQVeP65_Y_BO5MtAsWeBjFkbArNjDoi6KQBeaA6Ebvs970kVXu_cMmZrdgr5v3VpzAduGid8FmpFPJ-PNyyZvYeHzZuz_8NDgYvBlufx_t7o2-fhztvx392Bntfxi-23I-EqP3rw53N39-2Tn8vHUwGAw3tw_3Noevv13xFjvZQjrv26NW_FVMsPyaV6wWURGWZVwERUEh9lCVrEHtXEIWVlZg3C6nhQI7BmElowJif1bwKodot1DRVW-y97xXX_OmiorHNauiuMsoi0qZq1h1OadBqVQtWXXdu2v1Xbaf0tXlPx-CGyfAuemdb1_MW95k_8VafRsShH5xxzw6vwBwZcJK
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%8D%B7%E7%A7%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E5%92%8CTransformer%E7%9A%84%E8%A7%86%E9%A2%91%E8%A1%8C%E4%BA%BA%E5%86%8D%E8%AF%86%E5%88%AB&rft.jtitle=%E6%B2%B3%E5%8D%97%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E8%B5%B5%E5%BD%A6%E5%A6%82&rft.au=%E7%89%9B%E4%B8%9C%E6%9D%B0&rft.au=%E5%AD%99%E4%B8%9C%E7%BA%A2&rft.au=%E6%9D%A8%E8%95%99%E8%90%8C&rft.date=2023-11-01&rft.pub=%E6%B2%B3%E5%8D%97%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6+%E6%9C%BA%E6%A2%B0%E4%B8%8E%E5%8A%A8%E5%8A%9B%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B2%B3%E5%8D%97+%E7%84%A6%E4%BD%9C+454000&rft.issn=1673-9787&rft.volume=42&rft.issue=6&rft.spage=149&rft.epage=156&rft_id=info:doi/10.16186%2Fj.cnki.1673-9787.2021120013&rft.externalDocID=jzgxyxb202306019
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjzgxyxb%2Fjzgxyxb.jpg