基于WGKSOM-DRCA自适应即时学习的转炉炼钢终点碳温软测量方法

TP391; 转炉炼钢终点碳温的准确预测是实现转炉终点控制的关键.针对转炉生产过程数据存在波动性大和非线性特点引起传统即时学习度量的算法学习集质量低,进而削弱模型预测性能的问题,提出了一种基于加权高斯核自组织映射动态相关成分分析(WGKSOM-DRCA)自适应即时学习软测量建模方法用于转炉炼钢终点碳温预测.首先,采用引入标签信息的WGK度量准则构造WGKSOM聚类算法引导聚类方向,提高算法的聚类质量并降低类簇数据波动性对于建模的影响;其次,利用高斯后验概率计算待测样本的隶属度并通过引入动态因子构建DRCA度量策略,从而实现自适应的样本选择,进一步提升待测样本对应的局部算法学习集质量并用于局部模...

Full description

Saved in:
Bibliographic Details
Published in计算机集成制造系统 Vol. 30; no. 1; pp. 103 - 117
Main Authors 陈棕鑫, 刘辉, 陈甫刚, 刘建勋
Format Journal Article
LanguageChinese
Published 昆明理工大学信息工程与自动化学院,云南 昆明 650500 31.01.2024
昆明理工大学云南省人工智能重点实验室,云南 昆明 650500%云南昆钢电子信息科技有限公司,云南 昆明 650302
Subjects
Online AccessGet full text
ISSN1006-5911
DOI10.13196/j.cims.2022.0561

Cover

Loading…
Abstract TP391; 转炉炼钢终点碳温的准确预测是实现转炉终点控制的关键.针对转炉生产过程数据存在波动性大和非线性特点引起传统即时学习度量的算法学习集质量低,进而削弱模型预测性能的问题,提出了一种基于加权高斯核自组织映射动态相关成分分析(WGKSOM-DRCA)自适应即时学习软测量建模方法用于转炉炼钢终点碳温预测.首先,采用引入标签信息的WGK度量准则构造WGKSOM聚类算法引导聚类方向,提高算法的聚类质量并降低类簇数据波动性对于建模的影响;其次,利用高斯后验概率计算待测样本的隶属度并通过引入动态因子构建DRCA度量策略,从而实现自适应的样本选择,进一步提升待测样本对应的局部算法学习集质量并用于局部模型训练,最终输出终点碳温的预测结果.实验表明,所提算法在转炉炼钢终点碳温预测上相对于其他算法有更好的表现,在±0.02%的预测误差范围,碳含量的预测精度为92%,在±10℃的误差范围,温度的预测精度为93.5%.
AbstractList TP391; 转炉炼钢终点碳温的准确预测是实现转炉终点控制的关键.针对转炉生产过程数据存在波动性大和非线性特点引起传统即时学习度量的算法学习集质量低,进而削弱模型预测性能的问题,提出了一种基于加权高斯核自组织映射动态相关成分分析(WGKSOM-DRCA)自适应即时学习软测量建模方法用于转炉炼钢终点碳温预测.首先,采用引入标签信息的WGK度量准则构造WGKSOM聚类算法引导聚类方向,提高算法的聚类质量并降低类簇数据波动性对于建模的影响;其次,利用高斯后验概率计算待测样本的隶属度并通过引入动态因子构建DRCA度量策略,从而实现自适应的样本选择,进一步提升待测样本对应的局部算法学习集质量并用于局部模型训练,最终输出终点碳温的预测结果.实验表明,所提算法在转炉炼钢终点碳温预测上相对于其他算法有更好的表现,在±0.02%的预测误差范围,碳含量的预测精度为92%,在±10℃的误差范围,温度的预测精度为93.5%.
Abstract_FL Accurate endpoint prediction of Basic Oxygen Furnace(BOF)carbon content and temperature is the key to realize endpoint control.To solve the problem of low quality of similar samples by traditional Just-In-Time Learning(JITL)measurement due to the high volatility and nonlinear characteristics of BOF process data,an adaptive JITL soft-sensing method based on Weighted Gaussian Kernel Self-Organization Map Dynamic Relevant Component Anal-ysis(WGKSOM-DRCA)was proposed for endpoint prediction of BOF carbon content and temperature.The WGK-SOM clustering algorithm was proposed by using the WGK metric criterion introducing label information to guide the clustering direction and improve the clustering quality of algorithm and reduce the influence of data volatility.The Gaussian posterior probability was used to calculate the membership degree of the test samples and the appro-priate learning set was selected adaptively to predict the endpoint carbon content and temperature by introducing dy-namic factors and using DRCA metric learning strategy.Results showed that the proposed algorithm performed bet-ter than other algorithms in predicting endpoint carbon content and temperature of BOF steelmaking.The prediction accuracy of carbon content was 92%within the error range of±0.02%,and the prediction accuracy of temperature was 93.5%within the error range of±10℃.
Author 刘辉
陈甫刚
刘建勋
陈棕鑫
AuthorAffiliation 昆明理工大学信息工程与自动化学院,云南 昆明 650500;昆明理工大学云南省人工智能重点实验室,云南 昆明 650500%云南昆钢电子信息科技有限公司,云南 昆明 650302
AuthorAffiliation_xml – name: 昆明理工大学信息工程与自动化学院,云南 昆明 650500;昆明理工大学云南省人工智能重点实验室,云南 昆明 650500%云南昆钢电子信息科技有限公司,云南 昆明 650302
Author_FL CHEN Zongxin
LIU Jianxun
LIU Hui
CHEN Fugang
Author_FL_xml – sequence: 1
  fullname: CHEN Zongxin
– sequence: 2
  fullname: LIU Hui
– sequence: 3
  fullname: CHEN Fugang
– sequence: 4
  fullname: LIU Jianxun
Author_xml – sequence: 1
  fullname: 陈棕鑫
– sequence: 2
  fullname: 刘辉
– sequence: 3
  fullname: 陈甫刚
– sequence: 4
  fullname: 刘建勋
BookMark eNotUMtKw0AA3EMFa-0H-AtC4j6yqXssVatYqfjAY0k2u9KgKRhF6akEoYqoID7Ai9KDoCgegmKi_Zvm9RcG9DQMM8wwMwEKTscRAEwhqCKCmD5jq7y966oYYqxCqqMCKCIIdYUyhMZB2XXbZk6pTiqUFsFq9BCOwout-vJ6c0WZW6tV0_5L1vOi8Do69-O7z-jtaRQ8JvfH6fA18U4T7ye7GiTfJ4kXJAM__npOh-_xx1nWv4xvg9i_mQRj0thxRfkfS2BzYX6jtqg0mvWlWrWhuAhSpnAhONYJs7gUyBIYCZManOgIVrhlWDKXCJWWxWc1jTPOpWSmYCbBWm7HlJISmP7LPTQcaTjbLbtzsOfkjS3btW3e7R7t5xdoMN_OyC-9Z25J
ClassificationCodes TP391
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.13196/j.cims.2022.0561
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Soft-sensing method for endpoint prediction of BOF carbon content and temperature based on WGKSOM-DRCA adaptive JITL
EndPage 117
ExternalDocumentID jsjjczzxt202401009
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CDYEO
PSX
TCJ
ID FETCH-LOGICAL-s1059-ceec2639dcfe1de21eb5ac36107cdadf63935fddc844c9ccff9be9b324e1d2553
ISSN 1006-5911
IngestDate Thu May 29 04:00:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 自组织映射
just-in-time-learning
self organization map
即时学习
转炉炼钢
高斯核函数
soft sensor
relevant component analysis
相关成分分析
软测量
basic oxygen furnace
Gaussian kernel function
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1059-ceec2639dcfe1de21eb5ac36107cdadf63935fddc844c9ccff9be9b324e1d2553
PageCount 15
ParticipantIDs wanfang_journals_jsjjczzxt202401009
PublicationCentury 2000
PublicationDate 2024-01-31
PublicationDateYYYYMMDD 2024-01-31
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-31
  day: 31
PublicationDecade 2020
PublicationTitle 计算机集成制造系统
PublicationTitle_FL Computer Integrated Manufacturing Systems
PublicationYear 2024
Publisher 昆明理工大学信息工程与自动化学院,云南 昆明 650500
昆明理工大学云南省人工智能重点实验室,云南 昆明 650500%云南昆钢电子信息科技有限公司,云南 昆明 650302
Publisher_xml – name: 昆明理工大学信息工程与自动化学院,云南 昆明 650500
– name: 昆明理工大学云南省人工智能重点实验室,云南 昆明 650500%云南昆钢电子信息科技有限公司,云南 昆明 650302
SSID ssib006563755
ssib023646381
ssib001102950
ssib051375755
ssib023167363
ssib036438063
ssib000459500
ssib002258428
Score 2.4055758
Snippet TP391;...
SourceID wanfang
SourceType Aggregation Database
StartPage 103
Title 基于WGKSOM-DRCA自适应即时学习的转炉炼钢终点碳温软测量方法
URI https://d.wanfangdata.com.cn/periodical/jsjjczzxt202401009
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANNT24kUUFb8RdE4lNV-TzBwn2axFrYptsbeyM0nUgivYLcieZBGqiAriB3hRehAUxUNRbLX_prvb_gp9b5LdjW4P1UuYvHnz5n1M5r0X5sMwzjLbzmqeTEwJ5jU9Lqkpk5plpilNINxVdpbq0z4v-5Oz3oU5Ojey51dp1dJSQ06o5o77Sv7HqgADu-Iu2X-wbJ8oAKAM9oUnWBieu7IxiSnhVRIKEnv4ZPH18xenr0yZlWsRwBiBTF9AgeN6BuYgOmBxDwusQkKXxD7hAQl9hIgKEb6mxImwSBwQDiQ9pBNCVYQQIMJ4UQgjpMwdIhyEhCFhrFelcQCedxEyIniPTlVDgIFQMwb4GsJ93crHJvmFmL2YGRuKmAhb04yRYcSPtNzAAPTrIwR655YWjWmJtNS5IEAT2MuZ5P21zLo111z7RGC3GmITEQ5QNDnONPcxYXyHxgGqVIQ9XLFDY4o9I79abhaWf7Y4uECn56Xw89DisUIqLMS6D0tDgBJogWqDQa_Bn5arajWBLmyt6D4yPJnWuIfGQIL9wQEcCazFQoRmGBDUEoIVnagYYKCbfOjwYHyYy3GIw6lllfwc_kiivPBzhSN0raEPPvdqtuWWAiQ732w75HtxMtfOV926jQfhO84EpqeDQKO__HNhcWFBNZv3Gqhiy9YbcMccyPOsUWNMVKYuTZczDk5LJ0hCtOpwWt66DRF0KYOG9MQNBlutHTzooXTCHF6XAB6n79Lg1WXWoJ7a0DrQdyX3VVSshUDxzv0tnN7qV89q9RulqHRmv7GvSCdPi3xuOGCMNG8eNK62365vrj8tzQVbyx-377fa6y_aT1Y7r7-1P7_fXHvXffNga-NTt_Wo2_q5_Xyl--Nht7XWXVntfP-wtfGl8_Xx9vKzzqu1zurLQ8ZsNZ6JJs3i5hRzEfMlEyJf5UDukagstZPUsVNJa8qFVClQSS3JfNyQnyWJYp6nuFJZxmXKJSRXgO5Q6h42Rut36ukRPNNBSelYSkkXD3aypM-lTaVVS-Aty-RR40yhgfliZlycH7bvsV1hHTf2Dj66E8Zo4-5SehJi_oY8VYyL35SpxFo
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EWGKSOM-DRCA%E8%87%AA%E9%80%82%E5%BA%94%E5%8D%B3%E6%97%B6%E5%AD%A6%E4%B9%A0%E7%9A%84%E8%BD%AC%E7%82%89%E7%82%BC%E9%92%A2%E7%BB%88%E7%82%B9%E7%A2%B3%E6%B8%A9%E8%BD%AF%E6%B5%8B%E9%87%8F%E6%96%B9%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E9%9B%86%E6%88%90%E5%88%B6%E9%80%A0%E7%B3%BB%E7%BB%9F&rft.au=%E9%99%88%E6%A3%95%E9%91%AB&rft.au=%E5%88%98%E8%BE%89&rft.au=%E9%99%88%E7%94%AB%E5%88%9A&rft.au=%E5%88%98%E5%BB%BA%E5%8B%8B&rft.date=2024-01-31&rft.pub=%E6%98%86%E6%98%8E%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E4%B8%8E%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E9%99%A2%2C%E4%BA%91%E5%8D%97+%E6%98%86%E6%98%8E+650500&rft.issn=1006-5911&rft.volume=30&rft.issue=1&rft.spage=103&rft.epage=117&rft_id=info:doi/10.13196%2Fj.cims.2022.0561&rft.externalDocID=jsjjczzxt202401009
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjjczzxt%2Fjsjjczzxt.jpg