基于LMKL和OC-ELM的航空电子部件故障检测方法
V243; 针对航空电子部件故障样本获取困难以及检测准确率不高的问题,提出基于局部多核学习(localized multiple kernel learning,LMKL)和一类超限学习机(one-class extreme learning machine,OC-ELM)的故障检测方法.仅运用正常状态的小样本数据,给出了LMK-OC-ELM的数学表达形式,并在不同的门模型下推导了LMK-OC-ELM中局部核权重的优化方法;在获取局部核权重的基础上,定义了离线故障检测所需的统计检验量与阈值,以便工程实现.将所提方法应用于某型接收机,结果表明,在训练时间可控的前提下,与4种常见的一类分类(one...
Saved in:
Published in | 系统工程与电子技术 no. 6; pp. 1424 - 1432 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Chinese |
Published |
海军航空大学,山东烟台,264001%海军装备部,北京,100841%中国人民解放军92228部队,北京,100010
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | V243; 针对航空电子部件故障样本获取困难以及检测准确率不高的问题,提出基于局部多核学习(localized multiple kernel learning,LMKL)和一类超限学习机(one-class extreme learning machine,OC-ELM)的故障检测方法.仅运用正常状态的小样本数据,给出了LMK-OC-ELM的数学表达形式,并在不同的门模型下推导了LMK-OC-ELM中局部核权重的优化方法;在获取局部核权重的基础上,定义了离线故障检测所需的统计检验量与阈值,以便工程实现.将所提方法应用于某型接收机,结果表明,在训练时间可控的前提下,与4种常见的一类分类(one-class classification,OCC)算法相比,所提方法可均衡地提高召回率、查准率和特异度,以LMK-OC-ELM-sig为代表,其在F1、曲线下方面积(area under curve,AUC)、G-mean和准确率4个指标上,比最近提出的局部多核异常检测(localized multiple kernel anomaly detection,LMKAD)方法分别提高了1.60%、1.57%、1.53%和2.23%. |
---|---|
AbstractList | V243; 针对航空电子部件故障样本获取困难以及检测准确率不高的问题,提出基于局部多核学习(localized multiple kernel learning,LMKL)和一类超限学习机(one-class extreme learning machine,OC-ELM)的故障检测方法.仅运用正常状态的小样本数据,给出了LMK-OC-ELM的数学表达形式,并在不同的门模型下推导了LMK-OC-ELM中局部核权重的优化方法;在获取局部核权重的基础上,定义了离线故障检测所需的统计检验量与阈值,以便工程实现.将所提方法应用于某型接收机,结果表明,在训练时间可控的前提下,与4种常见的一类分类(one-class classification,OCC)算法相比,所提方法可均衡地提高召回率、查准率和特异度,以LMK-OC-ELM-sig为代表,其在F1、曲线下方面积(area under curve,AUC)、G-mean和准确率4个指标上,比最近提出的局部多核异常检测(localized multiple kernel anomaly detection,LMKAD)方法分别提高了1.60%、1.57%、1.53%和2.23%. |
Author | 朱敏 刘奇 刘星 许晴 |
AuthorAffiliation | 海军航空大学,山东烟台,264001%海军装备部,北京,100841%中国人民解放军92228部队,北京,100010 |
AuthorAffiliation_xml | – name: 海军航空大学,山东烟台,264001%海军装备部,北京,100841%中国人民解放军92228部队,北京,100010 |
Author_FL | ZHU Min LIU Xing LIU Qi XU Qing |
Author_FL_xml | – sequence: 1 fullname: ZHU Min – sequence: 2 fullname: LIU Qi – sequence: 3 fullname: LIU Xing – sequence: 4 fullname: XU Qing |
Author_xml | – sequence: 1 fullname: 朱敏 – sequence: 2 fullname: 刘奇 – sequence: 3 fullname: 刘星 – sequence: 4 fullname: 许晴 |
BookMark | eNrjYmDJy89LZWBQNjTQM7Y0s9TP0sssLs7TMzQwMNQ1NTCL0DMyMDLQMzDTM7JkYeCEC3Mw8BYXZyYZmBoam5samJtwMlg9nb_rya4-H19vn6eTevyddV19fJ_PannRser5yl3Pp2x9unbCy-YVT3Zveza19eWsOc8WNzzb2v1s2s5nm6fyMLCmJeYUp_JCaW6GUDfXEGcPXR9_d09nRx_dYkMDU0td00TjJLPE5MQkkxTzRAvTlKTUJIs0yzSLZDOLZCMzCwNL8xRDw-TUNEMD80Rjc3PLFMukNBOgA1PTkizNDJNMjLkZtCDmlifmpSXmpcdn5ZcW5QFtjK8oSU-uTKnKKgb51sDMwMjSGADM4V_j |
ClassificationCodes | V243 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3969/j.issn.1001-506X.2020.06.29 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | Fault detection method for avionics based on LMKL and OC-ELM |
EndPage | 1432 |
ExternalDocumentID | xtgcydzjs202006029 |
GrantInformation_xml | – fundername: 国家自然科学基金; 山东省自然科学基金资助课题 funderid: (11802338); (ZR2017MF036)资助课题 |
GroupedDBID | -0Y 2B. 4A8 5XA 5XJ 92E 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CUBFJ CW9 PSX TCJ TGP U1G U5S |
ID | FETCH-LOGICAL-s1059-5a3b6acab4d7a85dbeb8f9f8c68c268097d11cef107a3779d9bf4513efb961b43 |
ISSN | 1001-506X |
IngestDate | Thu May 29 04:00:30 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Keywords | 局部多核学习 故障检测 一类分类 超限学习机 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1059-5a3b6acab4d7a85dbeb8f9f8c68c268097d11cef107a3779d9bf4513efb961b43 |
PageCount | 9 |
ParticipantIDs | wanfang_journals_xtgcydzjs202006029 |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 系统工程与电子技术 |
PublicationTitle_FL | Systems Engineering and Electronics |
PublicationYear | 2020 |
Publisher | 海军航空大学,山东烟台,264001%海军装备部,北京,100841%中国人民解放军92228部队,北京,100010 |
Publisher_xml | – name: 海军航空大学,山东烟台,264001%海军装备部,北京,100841%中国人民解放军92228部队,北京,100010 |
SSID | ssib051375074 ssib002263377 ssib001102898 ssib057620160 ssib023168126 ssib023646287 ssj0042237 |
Score | 2.2573118 |
Snippet | V243; 针对航空电子部件故障样本获取困难以及检测准确率不高的问题,提出基于局部多核学习(localized multiple kernel learning,LMKL)和一类超限学习机(one-class extreme learning... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 1424 |
Title | 基于LMKL和OC-ELM的航空电子部件故障检测方法 |
URI | https://d.wanfangdata.com.cn/periodical/xtgcydzjs202006029 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxQxNNQtiILiJ35TqDlOna9kEm-Z7ZSirR5sobcyM5mpeFjB3YL2JKggKCJiPRTBgxcVPEkF699pt_Zf-F4muzPiUqqXIbyXvM9M8l7IByFXcxgOpc64o3XJHYj_XSfjOnJ0VAZFlpdpqM1ui1t8djG8scSWxlrHGruWVnvZVL428lzJ_3gVYOBXPCX7D54dEgUAlMG_8AUPw_dAPqYJo3KGxoomIX5FMjd_c85AfSrat9sOAGgSUQm4kCaCCkGVQoiSphmgoCXDJmqaSpcmkoqAKmEoxjTmNOFUMioYooCObCNEBbhFAgrQVsSmDpSlgQS0etByEPMiFwACNSzEKDGwi0EGZiQRhgKwg0IySiROhbLsgLsa7kW2gNgbyNjAMFRVCkMFytEIDMevbLQB2yQoBWLAPGFzRcR3651bpg9b5UENpAgt4lH2Be4hVZFVRnHo0UZ5z0htdEaDRmj0yi4C_OlCNQghzfMGbDQjdACz9EVUu62iL9pURrZTqDYA8XKlsKJmmIIw2EvAwdO2GkrLkbX0DP0IWaAlAJsMWUtcymt0ElnZcB-2rt1PXE18uLWOueZVycE_35zY8EBkI0iCKNsfNQEHkkszASPRqSHRKXQT3pNrV7f-vOH8YW8lf6TX7nWxlstdXx4i4z6kfX6LjKvp-bk7dYCP8XBjgQCShyCoT1L7-AybVycU-DoC9-sEhHkBRMh1wgPJto9XLA5itxCCZfMc00Dww2TSanVtH53Mgb9OmXZWGrHpwgly3CaVE6oaIU6SsbW7p8jRxlWjp8n1nQ9b21uvcHzYefOyGhl2N57-ev5l9_PW7tvNna-v95582v75vb_-bG_jff_j4_7mi_67H_1v62fI4kyy0J517LspThezJYelQcbTPM1CHaWC6azIRClLkXOR-1y4MtKelxel50Yp3jeqZVaGYJqizCT3sjA4S1qd-53iHJlIA1eHMM-L1MPQ3xXaL3PNfJEVQQRz-XkyaTVftuNid_lvd144UK2L5Ej9N18ird6D1eIyRPy97IrtBr8BiGa1Yg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ELMKL%E5%92%8COC-ELM%E7%9A%84%E8%88%AA%E7%A9%BA%E7%94%B5%E5%AD%90%E9%83%A8%E4%BB%B6%E6%95%85%E9%9A%9C%E6%A3%80%E6%B5%8B%E6%96%B9%E6%B3%95&rft.jtitle=%E7%B3%BB%E7%BB%9F%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF&rft.au=%E6%9C%B1%E6%95%8F&rft.au=%E5%88%98%E5%A5%87&rft.au=%E5%88%98%E6%98%9F&rft.au=%E8%AE%B8%E6%99%B4&rft.date=2020-06-01&rft.pub=%E6%B5%B7%E5%86%9B%E8%88%AA%E7%A9%BA%E5%A4%A7%E5%AD%A6%2C%E5%B1%B1%E4%B8%9C%E7%83%9F%E5%8F%B0%2C264001%25%E6%B5%B7%E5%86%9B%E8%A3%85%E5%A4%87%E9%83%A8%2C%E5%8C%97%E4%BA%AC%2C100841%25%E4%B8%AD%E5%9B%BD%E4%BA%BA%E6%B0%91%E8%A7%A3%E6%94%BE%E5%86%9B92228%E9%83%A8%E9%98%9F%2C%E5%8C%97%E4%BA%AC%2C100010&rft.issn=1001-506X&rft.issue=6&rft.spage=1424&rft.epage=1432&rft_id=info:doi/10.3969%2Fj.issn.1001-506X.2020.06.29&rft.externalDocID=xtgcydzjs202006029 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxtgcydzjs%2Fxtgcydzjs.jpg |