基于改进郊狼算法与极限学习机的工业金刚石检测
TP183%TP391; 为了提高工业金刚石的检测效率、保障产品质量,提出一种基于改进郊狼算法与极限学习机的工业金刚石检测方法.将工业金刚石视频图像按照一定时间序列分解为一组较为平稳的、形态单一的二维图像数据;利用深度卷积网络Inception-V3对多视角二维图像数据建立预测模型;在此基础上,以预测结果为输入构建极限学习机模型,并利用反向学习和莱维飞行改进的郊狼算法优化极限学习机输入权值和阈值,提高工业金刚石模型的检测精度.最后将该模型的检测结果与基本极限学习机、差分进化算法、粒子群优化算法和基本郊狼算法优化的极限学习机模型检测结果比较表明,该模型具有良好的检测精度和泛化能力,对于工业金刚石...
Saved in:
Published in | 计算机集成制造系统 Vol. 29; no. 2; pp. 449 - 459 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Chinese |
Published |
中国兵器工业信息中心,北京 100089
28.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1006-5911 |
DOI | 10.13196/j.cims.2023.02.008 |
Cover
Abstract | TP183%TP391; 为了提高工业金刚石的检测效率、保障产品质量,提出一种基于改进郊狼算法与极限学习机的工业金刚石检测方法.将工业金刚石视频图像按照一定时间序列分解为一组较为平稳的、形态单一的二维图像数据;利用深度卷积网络Inception-V3对多视角二维图像数据建立预测模型;在此基础上,以预测结果为输入构建极限学习机模型,并利用反向学习和莱维飞行改进的郊狼算法优化极限学习机输入权值和阈值,提高工业金刚石模型的检测精度.最后将该模型的检测结果与基本极限学习机、差分进化算法、粒子群优化算法和基本郊狼算法优化的极限学习机模型检测结果比较表明,该模型具有良好的检测精度和泛化能力,对于工业金刚石的质量检测具有指导意义. |
---|---|
AbstractList | TP183%TP391; 为了提高工业金刚石的检测效率、保障产品质量,提出一种基于改进郊狼算法与极限学习机的工业金刚石检测方法.将工业金刚石视频图像按照一定时间序列分解为一组较为平稳的、形态单一的二维图像数据;利用深度卷积网络Inception-V3对多视角二维图像数据建立预测模型;在此基础上,以预测结果为输入构建极限学习机模型,并利用反向学习和莱维飞行改进的郊狼算法优化极限学习机输入权值和阈值,提高工业金刚石模型的检测精度.最后将该模型的检测结果与基本极限学习机、差分进化算法、粒子群优化算法和基本郊狼算法优化的极限学习机模型检测结果比较表明,该模型具有良好的检测精度和泛化能力,对于工业金刚石的质量检测具有指导意义. |
Author | 兰小平 王波 赵振 杨一铭 杨建新 |
AuthorAffiliation | 中国兵器工业信息中心,北京 100089 |
AuthorAffiliation_xml | – name: 中国兵器工业信息中心,北京 100089 |
Author_FL | LAN Xiaoping YANG Yiming YANG Jianxin ZHAO Zhen WANG Bo |
Author_FL_xml | – sequence: 1 fullname: YANG Jianxin – sequence: 2 fullname: LAN Xiaoping – sequence: 3 fullname: ZHAO Zhen – sequence: 4 fullname: YANG Yiming – sequence: 5 fullname: WANG Bo |
Author_xml | – sequence: 1 fullname: 杨建新 – sequence: 2 fullname: 兰小平 – sequence: 3 fullname: 赵振 – sequence: 4 fullname: 杨一铭 – sequence: 5 fullname: 王波 |
BookMark | eNotj8tKw0AYRmdRwVr7BL6BkDiTPzNJllq8QcGNrstcEmnQFIyidKUoKBaKgiJGsYLoTjdFbIPgy-Ri3sKIrg7f5nycKVQJOoGL0AzBOgHisDlfl-3tUDewATo2dIztCqoSjJlGHUImUT0M26KclIFFaRUtpIM4ifvZ1fj76644Ps97n_nbTTa8Tkb97OGouL1IX1-S8WN2H-fRSfrxnIyi4vQyPYvywTB7Oszee9NowuNboVv_Zw1tLC2uN1a05tryamO-qYUEU1uTSinbosIFC4RiNgdqADeVpUwpOCVMEdMFBwzFLYxdzxGMgRDKtCVIaSmoodk_7z4PPB5stvzO3k5QPrb80Pdlt3uw-5uNjTIafgBFWmhG |
ClassificationCodes | TP183%TP391 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.13196/j.cims.2023.02.008 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | [8] HUANG Qiang,WANG Yongxiong.3D object recognition method combining extreme learning machine and coalesce con |
EndPage | 459 |
ExternalDocumentID | jsjjczzxt202302008 |
GroupedDBID | 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS CDYEO PSX TCJ |
ID | FETCH-LOGICAL-s1058-cddd875be373bd68a3523a4d7d4cba516d14e3932da700ef9b663bbd48c3cc7d3 |
ISSN | 1006-5911 |
IngestDate | Thu May 29 04:00:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | 郊狼优化算法 反向学习 极限学习机 莱维飞行 工业金刚石 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1058-cddd875be373bd68a3523a4d7d4cba516d14e3932da700ef9b663bbd48c3cc7d3 |
PageCount | 11 |
ParticipantIDs | wanfang_journals_jsjjczzxt202302008 |
PublicationCentury | 2000 |
PublicationDate | 2023-02-28 |
PublicationDateYYYYMMDD | 2023-02-28 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | 计算机集成制造系统 |
PublicationTitle_FL | Computer Integrated Manufacturing Systems |
PublicationYear | 2023 |
Publisher | 中国兵器工业信息中心,北京 100089 |
Publisher_xml | – name: 中国兵器工业信息中心,北京 100089 |
SSID | ssib006563755 ssib023646381 ssib001102950 ssib051375755 ssib023167363 ssib036438063 ssib000459500 ssib002258428 |
Score | 2.3708715 |
Snippet | TP183%TP391;... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 449 |
Title | 基于改进郊狼算法与极限学习机的工业金刚石检测 |
URI | https://d.wanfangdata.com.cn/periodical/jsjjczzxt202302008 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1daxQxcKntiy-iqPhNQfMkp7ubzSZ53Gz3KKK-2ELfyu5mTy14gr2C3JOioFgoCopYxQp-vOlLEdsi-Gfuw_4LZ7K5u63tQxWWkEsmM5NMsjOzl0wc50IYeAHPQlZjGQcHRaZ5LS10WhM0lQ1fezItTLTP6-H0bHBljs2NHfhU2bW01Mou5e09z5X8j1ShDOSKp2T_QbJDpFAAeZAvpCBhSPclY5IwIutERSQJMBUJSUIiIS9JIoiqE6lIIomgRAAMJ0IRFWMmSojkCKwokcw0F4PmCViX2ErC4yKJaIpEoYGRJHINTGyIciKBaIAwCnAO8EAhEoVaD6tEWcINqxSbRxQ3WCB1qFVV-xjZBt4ibweTlpzE7ogQSxCna5Gr0JBzDW8cSShlMgooDiaUQQP9EIZZZfBBCbDgjkAAHVQavJCKuslIwDgCEcgzPMhDTKK98Jdj6Rp-KbHxLu2HFZ9WDqrjUrDgMMQoS-BrasAGMyVywPJf4xugdHGYQpRWVN-BB6pA5H5sUMVmEM38iOKL-EdLeZuSVUX4rYdJq4qsrvJlZU36FcUTlIFfrQ0TlFHWd6lHfN8a_ZjfvoOx6n1aBqwVI2tguEdzYXFhIW-377cQzPXNifoJn3PcDDERTV27eqPqFkhWCfMIJqUvWfV8NZi5FTcXfAjKR-ehfYzGUAkDh3cagFoY6h34SYU7qmcetObmQuPhINmAYtjBy7u7Z07kNRtp82bFeJw57ByyXt9kVC7hI85Y-9ZRR3XXtjpbK72Xm79_vd1-9Ky__LP_7XVv_VVnY6X3_uH2m-fdr186mx9677b6q4-7Pz53Nla3n7zoPl3tr633Pj7ofV8-5szWk5l4umavNKktgiMjarnWWnCWFZTTTIciBf-HpoHmOsizlHmh9oKCgk-lU-66RUNm4BFkmQ5ETvOca3rcGW_ebRYnnEmeg_50G76rvSKA0U8Zow2w9htZ6IVC85POedvnefvKWpzfLdNT-4I67RwcrZAzznjr3lJxFozxVnbOzoU_VbKpsg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%94%B9%E8%BF%9B%E9%83%8A%E7%8B%BC%E7%AE%97%E6%B3%95%E4%B8%8E%E6%9E%81%E9%99%90%E5%AD%A6%E4%B9%A0%E6%9C%BA%E7%9A%84%E5%B7%A5%E4%B8%9A%E9%87%91%E5%88%9A%E7%9F%B3%E6%A3%80%E6%B5%8B&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E9%9B%86%E6%88%90%E5%88%B6%E9%80%A0%E7%B3%BB%E7%BB%9F&rft.au=%E6%9D%A8%E5%BB%BA%E6%96%B0&rft.au=%E5%85%B0%E5%B0%8F%E5%B9%B3&rft.au=%E8%B5%B5%E6%8C%AF&rft.au=%E6%9D%A8%E4%B8%80%E9%93%AD&rft.date=2023-02-28&rft.pub=%E4%B8%AD%E5%9B%BD%E5%85%B5%E5%99%A8%E5%B7%A5%E4%B8%9A%E4%BF%A1%E6%81%AF%E4%B8%AD%E5%BF%83%2C%E5%8C%97%E4%BA%AC+100089&rft.issn=1006-5911&rft.volume=29&rft.issue=2&rft.spage=449&rft.epage=459&rft_id=info:doi/10.13196%2Fj.cims.2023.02.008&rft.externalDocID=jsjjczzxt202302008 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjjczzxt%2Fjsjjczzxt.jpg |