基于改进郊狼算法与极限学习机的工业金刚石检测

TP183%TP391; 为了提高工业金刚石的检测效率、保障产品质量,提出一种基于改进郊狼算法与极限学习机的工业金刚石检测方法.将工业金刚石视频图像按照一定时间序列分解为一组较为平稳的、形态单一的二维图像数据;利用深度卷积网络Inception-V3对多视角二维图像数据建立预测模型;在此基础上,以预测结果为输入构建极限学习机模型,并利用反向学习和莱维飞行改进的郊狼算法优化极限学习机输入权值和阈值,提高工业金刚石模型的检测精度.最后将该模型的检测结果与基本极限学习机、差分进化算法、粒子群优化算法和基本郊狼算法优化的极限学习机模型检测结果比较表明,该模型具有良好的检测精度和泛化能力,对于工业金刚石...

Full description

Saved in:
Bibliographic Details
Published in计算机集成制造系统 Vol. 29; no. 2; pp. 449 - 459
Main Authors 杨建新, 兰小平, 赵振, 杨一铭, 王波
Format Journal Article
LanguageChinese
Published 中国兵器工业信息中心,北京 100089 28.02.2023
Subjects
Online AccessGet full text
ISSN1006-5911
DOI10.13196/j.cims.2023.02.008

Cover

Abstract TP183%TP391; 为了提高工业金刚石的检测效率、保障产品质量,提出一种基于改进郊狼算法与极限学习机的工业金刚石检测方法.将工业金刚石视频图像按照一定时间序列分解为一组较为平稳的、形态单一的二维图像数据;利用深度卷积网络Inception-V3对多视角二维图像数据建立预测模型;在此基础上,以预测结果为输入构建极限学习机模型,并利用反向学习和莱维飞行改进的郊狼算法优化极限学习机输入权值和阈值,提高工业金刚石模型的检测精度.最后将该模型的检测结果与基本极限学习机、差分进化算法、粒子群优化算法和基本郊狼算法优化的极限学习机模型检测结果比较表明,该模型具有良好的检测精度和泛化能力,对于工业金刚石的质量检测具有指导意义.
AbstractList TP183%TP391; 为了提高工业金刚石的检测效率、保障产品质量,提出一种基于改进郊狼算法与极限学习机的工业金刚石检测方法.将工业金刚石视频图像按照一定时间序列分解为一组较为平稳的、形态单一的二维图像数据;利用深度卷积网络Inception-V3对多视角二维图像数据建立预测模型;在此基础上,以预测结果为输入构建极限学习机模型,并利用反向学习和莱维飞行改进的郊狼算法优化极限学习机输入权值和阈值,提高工业金刚石模型的检测精度.最后将该模型的检测结果与基本极限学习机、差分进化算法、粒子群优化算法和基本郊狼算法优化的极限学习机模型检测结果比较表明,该模型具有良好的检测精度和泛化能力,对于工业金刚石的质量检测具有指导意义.
Author 兰小平
王波
赵振
杨一铭
杨建新
AuthorAffiliation 中国兵器工业信息中心,北京 100089
AuthorAffiliation_xml – name: 中国兵器工业信息中心,北京 100089
Author_FL LAN Xiaoping
YANG Yiming
YANG Jianxin
ZHAO Zhen
WANG Bo
Author_FL_xml – sequence: 1
  fullname: YANG Jianxin
– sequence: 2
  fullname: LAN Xiaoping
– sequence: 3
  fullname: ZHAO Zhen
– sequence: 4
  fullname: YANG Yiming
– sequence: 5
  fullname: WANG Bo
Author_xml – sequence: 1
  fullname: 杨建新
– sequence: 2
  fullname: 兰小平
– sequence: 3
  fullname: 赵振
– sequence: 4
  fullname: 杨一铭
– sequence: 5
  fullname: 王波
BookMark eNotj8tKw0AYRmdRwVr7BL6BkDiTPzNJllq8QcGNrstcEmnQFIyidKUoKBaKgiJGsYLoTjdFbIPgy-Ri3sKIrg7f5nycKVQJOoGL0AzBOgHisDlfl-3tUDewATo2dIztCqoSjJlGHUImUT0M26KclIFFaRUtpIM4ifvZ1fj76644Ps97n_nbTTa8Tkb97OGouL1IX1-S8WN2H-fRSfrxnIyi4vQyPYvywTB7Oszee9NowuNboVv_Zw1tLC2uN1a05tryamO-qYUEU1uTSinbosIFC4RiNgdqADeVpUwpOCVMEdMFBwzFLYxdzxGMgRDKtCVIaSmoodk_7z4PPB5stvzO3k5QPrb80Pdlt3uw-5uNjTIafgBFWmhG
ClassificationCodes TP183%TP391
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.13196/j.cims.2023.02.008
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL [8] HUANG Qiang,WANG Yongxiong.3D object recognition method combining extreme learning machine and coalesce con
EndPage 459
ExternalDocumentID jsjjczzxt202302008
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CDYEO
PSX
TCJ
ID FETCH-LOGICAL-s1058-cddd875be373bd68a3523a4d7d4cba516d14e3932da700ef9b663bbd48c3cc7d3
ISSN 1006-5911
IngestDate Thu May 29 04:00:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 郊狼优化算法
反向学习
极限学习机
莱维飞行
工业金刚石
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1058-cddd875be373bd68a3523a4d7d4cba516d14e3932da700ef9b663bbd48c3cc7d3
PageCount 11
ParticipantIDs wanfang_journals_jsjjczzxt202302008
PublicationCentury 2000
PublicationDate 2023-02-28
PublicationDateYYYYMMDD 2023-02-28
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-28
  day: 28
PublicationDecade 2020
PublicationTitle 计算机集成制造系统
PublicationTitle_FL Computer Integrated Manufacturing Systems
PublicationYear 2023
Publisher 中国兵器工业信息中心,北京 100089
Publisher_xml – name: 中国兵器工业信息中心,北京 100089
SSID ssib006563755
ssib023646381
ssib001102950
ssib051375755
ssib023167363
ssib036438063
ssib000459500
ssib002258428
Score 2.3708715
Snippet TP183%TP391;...
SourceID wanfang
SourceType Aggregation Database
StartPage 449
Title 基于改进郊狼算法与极限学习机的工业金刚石检测
URI https://d.wanfangdata.com.cn/periodical/jsjjczzxt202302008
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1daxQxcKntiy-iqPhNQfMkp7ubzSZ53Gz3KKK-2ELfyu5mTy14gr2C3JOioFgoCopYxQp-vOlLEdsi-Gfuw_4LZ7K5u63tQxWWkEsmM5NMsjOzl0wc50IYeAHPQlZjGQcHRaZ5LS10WhM0lQ1fezItTLTP6-H0bHBljs2NHfhU2bW01Mou5e09z5X8j1ShDOSKp2T_QbJDpFAAeZAvpCBhSPclY5IwIutERSQJMBUJSUIiIS9JIoiqE6lIIomgRAAMJ0IRFWMmSojkCKwokcw0F4PmCViX2ErC4yKJaIpEoYGRJHINTGyIciKBaIAwCnAO8EAhEoVaD6tEWcINqxSbRxQ3WCB1qFVV-xjZBt4ibweTlpzE7ogQSxCna5Gr0JBzDW8cSShlMgooDiaUQQP9EIZZZfBBCbDgjkAAHVQavJCKuslIwDgCEcgzPMhDTKK98Jdj6Rp-KbHxLu2HFZ9WDqrjUrDgMMQoS-BrasAGMyVywPJf4xugdHGYQpRWVN-BB6pA5H5sUMVmEM38iOKL-EdLeZuSVUX4rYdJq4qsrvJlZU36FcUTlIFfrQ0TlFHWd6lHfN8a_ZjfvoOx6n1aBqwVI2tguEdzYXFhIW-377cQzPXNifoJn3PcDDERTV27eqPqFkhWCfMIJqUvWfV8NZi5FTcXfAjKR-ehfYzGUAkDh3cagFoY6h34SYU7qmcetObmQuPhINmAYtjBy7u7Z07kNRtp82bFeJw57ByyXt9kVC7hI85Y-9ZRR3XXtjpbK72Xm79_vd1-9Ky__LP_7XVv_VVnY6X3_uH2m-fdr186mx9677b6q4-7Pz53Nla3n7zoPl3tr633Pj7ofV8-5szWk5l4umavNKktgiMjarnWWnCWFZTTTIciBf-HpoHmOsizlHmh9oKCgk-lU-66RUNm4BFkmQ5ETvOca3rcGW_ebRYnnEmeg_50G76rvSKA0U8Zow2w9htZ6IVC85POedvnefvKWpzfLdNT-4I67RwcrZAzznjr3lJxFozxVnbOzoU_VbKpsg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%94%B9%E8%BF%9B%E9%83%8A%E7%8B%BC%E7%AE%97%E6%B3%95%E4%B8%8E%E6%9E%81%E9%99%90%E5%AD%A6%E4%B9%A0%E6%9C%BA%E7%9A%84%E5%B7%A5%E4%B8%9A%E9%87%91%E5%88%9A%E7%9F%B3%E6%A3%80%E6%B5%8B&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E9%9B%86%E6%88%90%E5%88%B6%E9%80%A0%E7%B3%BB%E7%BB%9F&rft.au=%E6%9D%A8%E5%BB%BA%E6%96%B0&rft.au=%E5%85%B0%E5%B0%8F%E5%B9%B3&rft.au=%E8%B5%B5%E6%8C%AF&rft.au=%E6%9D%A8%E4%B8%80%E9%93%AD&rft.date=2023-02-28&rft.pub=%E4%B8%AD%E5%9B%BD%E5%85%B5%E5%99%A8%E5%B7%A5%E4%B8%9A%E4%BF%A1%E6%81%AF%E4%B8%AD%E5%BF%83%2C%E5%8C%97%E4%BA%AC+100089&rft.issn=1006-5911&rft.volume=29&rft.issue=2&rft.spage=449&rft.epage=459&rft_id=info:doi/10.13196%2Fj.cims.2023.02.008&rft.externalDocID=jsjjczzxt202302008
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjjczzxt%2Fjsjjczzxt.jpg