基于边缘强化的无监督单目深度估计

TP391; 为解决无监督单目深度估计边缘深度估计不准确的问题,提出了一种基于边缘强化的无监督单目深度估计网络模型.该模型由单视图深度网络和姿态网络两部分构成,均采用编解码结构,其中单视图深度网络编码器使用高分辨率网络(high-resolution net,HRNet)作为骨干网络,在整个过程中保持高分辨率表示,有利于提取精确空间特征;单视图深度网络解码器引入条状卷积,细化深度边缘附近的深度变化,同时利用经典的高斯拉普拉斯算子增强边缘细节,最终充分利用深度边缘信息提高深度估计质量.在KITTI数据集中进行的实验结果表明:所提模型具有较好的深度估计性能,能够使深度图中的 目标边缘更加清晰,细节...

Full description

Saved in:
Bibliographic Details
Published in系统工程与电子技术 Vol. 46; no. 1; pp. 71 - 79
Main Authors 曲熠, 陈莹
Format Journal Article
LanguageChinese
Published 江南大学轻工过程先进控制教育部重点实验室,江苏无锡 214122 2024
Subjects
Online AccessGet full text
ISSN1001-506X
DOI10.12305/j.issn.1001-506X.2024.01.08

Cover

Abstract TP391; 为解决无监督单目深度估计边缘深度估计不准确的问题,提出了一种基于边缘强化的无监督单目深度估计网络模型.该模型由单视图深度网络和姿态网络两部分构成,均采用编解码结构,其中单视图深度网络编码器使用高分辨率网络(high-resolution net,HRNet)作为骨干网络,在整个过程中保持高分辨率表示,有利于提取精确空间特征;单视图深度网络解码器引入条状卷积,细化深度边缘附近的深度变化,同时利用经典的高斯拉普拉斯算子增强边缘细节,最终充分利用深度边缘信息提高深度估计质量.在KITTI数据集中进行的实验结果表明:所提模型具有较好的深度估计性能,能够使深度图中的 目标边缘更加清晰,细节更加丰富.
AbstractList TP391; 为解决无监督单目深度估计边缘深度估计不准确的问题,提出了一种基于边缘强化的无监督单目深度估计网络模型.该模型由单视图深度网络和姿态网络两部分构成,均采用编解码结构,其中单视图深度网络编码器使用高分辨率网络(high-resolution net,HRNet)作为骨干网络,在整个过程中保持高分辨率表示,有利于提取精确空间特征;单视图深度网络解码器引入条状卷积,细化深度边缘附近的深度变化,同时利用经典的高斯拉普拉斯算子增强边缘细节,最终充分利用深度边缘信息提高深度估计质量.在KITTI数据集中进行的实验结果表明:所提模型具有较好的深度估计性能,能够使深度图中的 目标边缘更加清晰,细节更加丰富.
Abstract_FL To solve the problem of poor edge depth estimation accuracy in unsupervised monocular depth estimation,an unsupervised monocular depth estimation model based on edge enhancement is proposed.The model is composed of a single-view depth network and a camera pose estimation network,both of which adopt encoder-decoder structures.The single-view depth network encoder uses high-resolution net(HRNet)as the backbone which maintains high resolution representations throughout the whole process,and is conducive to extract accurate spatial features;The single-view depth network decoder introduces strip convolutions to refine the depth variations near the edges,while enhancing the edge details using the classical Laplace of Gaussian operator.The method fully utilizes the depth edge information to improve the quality of the depth estimation.The experimental results on the KITTI dataset show that the proposed model has good depth estimation performance,making the edges of the depth map clearer with more details.
Author 曲熠
陈莹
AuthorAffiliation 江南大学轻工过程先进控制教育部重点实验室,江苏无锡 214122
AuthorAffiliation_xml – name: 江南大学轻工过程先进控制教育部重点实验室,江苏无锡 214122
Author_FL QU Yi
CHEN Ying
Author_FL_xml – sequence: 1
  fullname: QU Yi
– sequence: 2
  fullname: CHEN Ying
Author_xml – sequence: 1
  fullname: 曲熠
– sequence: 2
  fullname: 陈莹
BookMark eNo9j7tKA0EUhqeIYIx5Cythx3NmMrtnSgneIGCjYBd29hKyyAQcxUttqYKFUQyiIlgGrcQl-DTZbB7DiGL1wV98P98Cq9ieTRhbQuAoJKiVjHedsxwB0FPg73EBosEBOVCFVf_neVZ3rmtAoQwUBI0qg-IxH-dX06_PcnRXjPLiol_en09un8rBdfnwUlzelIPh5OO9yF_Ho7fp8HmRzaXhvkvqf6yx3fW1neam19re2GqutjyHoMgjjBPwUUsthUBpjPEl-ipKEOJQpyR0YkQoowgoNRTHFPgglKKAFJLWRtbY8q_3OLRpaDvtrHd0YGeP7ZPDTnQan2XupxFmbSS_AfHlXG8
ClassificationCodes TP391
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12305/j.issn.1001-506X.2024.01.08
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Unsupervised monocular depth estimation based on edge enhancement
EndPage 79
ExternalDocumentID xtgcydzjs202401008
GrantInformation_xml – fundername: 国家自然科学基金
  funderid: (62173160)
GroupedDBID -0Y
2B.
4A8
5XA
5XJ
92E
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
PSX
TCJ
TGP
U1G
U5S
ID FETCH-LOGICAL-s1058-81de06193932213bbb63165ce10da9f829eb2a3cc08fb8dd876025587851899b3
ISSN 1001-506X
IngestDate Thu May 29 04:00:31 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords 单目深度估计
strip convolutions
无监督学习
edge enhancement
边缘增强
条状卷积
monocular depth estimation
unsupervised learning
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1058-81de06193932213bbb63165ce10da9f829eb2a3cc08fb8dd876025587851899b3
PageCount 9
ParticipantIDs wanfang_journals_xtgcydzjs202401008
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle 系统工程与电子技术
PublicationTitle_FL Systems Engineering and Electronics
PublicationYear 2024
Publisher 江南大学轻工过程先进控制教育部重点实验室,江苏无锡 214122
Publisher_xml – name: 江南大学轻工过程先进控制教育部重点实验室,江苏无锡 214122
SSID ssib051375074
ssib002263377
ssib001102898
ssib057620160
ssib023168126
ssib023646287
ssj0042237
Score 2.3929818
Snippet TP391; 为解决无监督单目深度估计边缘深度估计不准确的问题,提出了一种基于边缘强化的无监督单目深度估计网络模型.该模型由单视图深度网络和姿态网络两部分构成,均采用编解码结构,其中单视图深度网络编码器使用高分辨率网络(high-resolution...
SourceID wanfang
SourceType Aggregation Database
StartPage 71
Title 基于边缘强化的无监督单目深度估计
URI https://d.wanfangdata.com.cn/periodical/xtgcydzjs202401008
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEG7iBkQP4hPfBLRPMnG6e3qm-9izO0sQ48UEcgvzTPCwgtmA7tljFDz4wCAqgsegJ3EJ_ppsNj_Dqt7OzkBEoiw0TXVN1VddO9NVTT8IuQ1DCPxR8srTyi-8QJSBl1aF7-lcFVJX8Mtxv_Pig3BhObi3IldmTmw1Vi1t9rP5fPDHfSX_41WggV9xl-w_eHYqFAhQB_9CCR6G8lg-pomkuktjQ5MAS5XQRNE4obGmSUTjNtUKeaCCPJIqoITYpIE5oElIdUSNbykx1cxWOtQIy9yhWromkyBzDDKZFWioCa1SkOyjUmAwrBnpWgCCxrGtxIgTHwR1VqZRVMVWgrKwQQvUJfIY0OujOmVwHQaCbFMzXYFsCTGNOT6kQoBft2iqNVUKASnsheacBq9nM60tzEFCMyOrN6AmcgDQOujJjsU_hQ2ULlVRAz88Lp1CaAJYCDtxcoAehxauRFwIilvcgFGgBKxECAAt4dZrEntSJ9hkDPprQgFsvN2AbbWrbsODGjvQsDucBYw35nLx9CtP-vYix-lg5OZjmy_dZGSZXFTjYpTJ_TtHRj9IJ6Ud_lD-_FT-PHaxPZxW1aP-dC3m0_5a_qwYPNpALp_ZnfOzPIqYbJFZ01m8_7AOrzEabaTnELoLUe9j5ngJGqvDebybIOR1-C-ZgPi0Tjcg1eV4wOFh5BRAqGovQzoEfhK-Jc6su38xyu6361Vpb60RGi6dJWdcTjdnJi_oOTIzWD9PTjdO-rxA_NHH4d7w5cGvn-Pdd6Pd4Wjrzfj98_23n8bbr8YfvoxevB5v7-z_-D4aft3b_Xaw8_kiWe4mS-0Fz11W4m1AiqI8yPtKiI21gISIM5FlWQjdIfOS-UWqK8V1mfFU5LmvqkwVBUQhmM6rCFIepXUmLpFW73GvvEzmdCGELMNSFDoLopSrSvMqrTJR8bRSRXaF3HL2rrqP0cbqUS9ePRbXNXIK65NJxeuk1X-yWd6AMLuf3XTe_w1iz5i2
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%BE%B9%E7%BC%98%E5%BC%BA%E5%8C%96%E7%9A%84%E6%97%A0%E7%9B%91%E7%9D%A3%E5%8D%95%E7%9B%AE%E6%B7%B1%E5%BA%A6%E4%BC%B0%E8%AE%A1&rft.jtitle=%E7%B3%BB%E7%BB%9F%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF&rft.au=%E6%9B%B2%E7%86%A0&rft.au=%E9%99%88%E8%8E%B9&rft.date=2024&rft.pub=%E6%B1%9F%E5%8D%97%E5%A4%A7%E5%AD%A6%E8%BD%BB%E5%B7%A5%E8%BF%87%E7%A8%8B%E5%85%88%E8%BF%9B%E6%8E%A7%E5%88%B6%E6%95%99%E8%82%B2%E9%83%A8%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E6%B1%9F%E8%8B%8F%E6%97%A0%E9%94%A1+214122&rft.issn=1001-506X&rft.volume=46&rft.issue=1&rft.spage=71&rft.epage=79&rft_id=info:doi/10.12305%2Fj.issn.1001-506X.2024.01.08&rft.externalDocID=xtgcydzjs202401008
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxtgcydzjs%2Fxtgcydzjs.jpg