基于特征空间变换的纺纱过程多关联参数质量波动异常检测
TH165.4%TS111.9; 纺纱过程参数众多且相互关联,模糊了过程参数与纱线质量指标间的重要信息,针对纺纱过程参数强耦合带来的纺纱过程质量波动难以检测与控制的问题,提出一种基于特征空间变换的纺纱过程多关联参数质量波动异常检测方法.首先,分析纺纱过程参数间的关联关系,采用偏最小二乘法(PLS)消除参数之间的相关性,获得具有正交性的特征空间.然后,利用新的特征空间数据计算局部离群因子(LOF)统计量,判定纺纱过程是否稳定,定位异常波动区域.最后将相关性分析后的异常波动数据作为深度置信网络(DBN)模型的输入,识别纺纱过程异常波动类型.通过算例进行验证,结果显示所提模型将纺纱过程多关联参数异常...
Saved in:
Published in | 计算机集成制造系统 Vol. 29; no. 7; pp. 2224 - 2232 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Chinese |
Published |
西安工程大学 机电工程学院,陕西 西安 710048
31.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | TH165.4%TS111.9; 纺纱过程参数众多且相互关联,模糊了过程参数与纱线质量指标间的重要信息,针对纺纱过程参数强耦合带来的纺纱过程质量波动难以检测与控制的问题,提出一种基于特征空间变换的纺纱过程多关联参数质量波动异常检测方法.首先,分析纺纱过程参数间的关联关系,采用偏最小二乘法(PLS)消除参数之间的相关性,获得具有正交性的特征空间.然后,利用新的特征空间数据计算局部离群因子(LOF)统计量,判定纺纱过程是否稳定,定位异常波动区域.最后将相关性分析后的异常波动数据作为深度置信网络(DBN)模型的输入,识别纺纱过程异常波动类型.通过算例进行验证,结果显示所提模型将纺纱过程多关联参数异常检测精度提高到 98.2%. |
---|---|
AbstractList | TH165.4%TS111.9; 纺纱过程参数众多且相互关联,模糊了过程参数与纱线质量指标间的重要信息,针对纺纱过程参数强耦合带来的纺纱过程质量波动难以检测与控制的问题,提出一种基于特征空间变换的纺纱过程多关联参数质量波动异常检测方法.首先,分析纺纱过程参数间的关联关系,采用偏最小二乘法(PLS)消除参数之间的相关性,获得具有正交性的特征空间.然后,利用新的特征空间数据计算局部离群因子(LOF)统计量,判定纺纱过程是否稳定,定位异常波动区域.最后将相关性分析后的异常波动数据作为深度置信网络(DBN)模型的输入,识别纺纱过程异常波动类型.通过算例进行验证,结果显示所提模型将纺纱过程多关联参数异常检测精度提高到 98.2%. |
Author | 赵小惠 李哲 陈臣 胡胜 李文 |
AuthorAffiliation | 西安工程大学 机电工程学院,陕西 西安 710048 |
AuthorAffiliation_xml | – name: 西安工程大学 机电工程学院,陕西 西安 710048 |
Author_FL | LI Zhe CHEN Chen LI Wen HU Sheng ZHAO Xiaohui |
Author_FL_xml | – sequence: 1 fullname: HU Sheng – sequence: 2 fullname: LI Wen – sequence: 3 fullname: ZHAO Xiaohui – sequence: 4 fullname: LI Zhe – sequence: 5 fullname: CHEN Chen |
Author_xml | – sequence: 1 fullname: 胡胜 – sequence: 2 fullname: 李文 – sequence: 3 fullname: 赵小惠 – sequence: 4 fullname: 李哲 – sequence: 5 fullname: 陈臣 |
BookMark | eNotkMtKw0AYRmdRwVr7BL6BkPj_M5lJspTiDYpudF3GXKRBUzCK0pUtSqlFs1GUboTqou6UVqhB9GWcpH0LK7o6fJvzwZkjubAWeoQsIOjI0BZLge5UDyKdAmU6mDqAlSN5BBAatxFnSTGKqrvTyQUzOc-TTfWQfCfXWftdfTay52RyN1TxfXrVy7rnWZJkyev4q5X1O-qpqy4G48aNipvp7ct42J-04nTQU5d99dFUo1H6eJa-debJjC_3I6_4zwLZWV3ZLq1r5a21jdJyWYsQuKUxz7AdyiQF9AS1BTiSu54tLQSJUgiXOwZHQQ2fShddZCBtzzIkAAfqmxYrkMU_74kMfRnuVYLa8WE4fawEURA49frp0W8CMKcB2A8Eim9u |
ClassificationCodes | TH165.4%TS111.9 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.13196/j.cims.2023.07.008 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | Quality fluctuation abnormal detection of multi-related parameters in spinning process based on feature space transformation |
EndPage | 2232 |
ExternalDocumentID | jsjjczzxt202307008 |
GroupedDBID | 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS CDYEO PSX TCJ |
ID | FETCH-LOGICAL-s1058-3e49c23a201e62960ca5de9a810a1a66d5c451624f2ad1d130a9e84a00502f783 |
ISSN | 1006-5911 |
IngestDate | Thu May 29 04:00:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | local outlier factor abnormal detection 特征空间变换 纺纱过程 spinning process 质量波动 deep belief network quality fluctuation fea-ture space transformation 深度置信网络 局部离群因子 异常检测 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1058-3e49c23a201e62960ca5de9a810a1a66d5c451624f2ad1d130a9e84a00502f783 |
PageCount | 9 |
ParticipantIDs | wanfang_journals_jsjjczzxt202307008 |
PublicationCentury | 2000 |
PublicationDate | 2023-07-31 |
PublicationDateYYYYMMDD | 2023-07-31 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | 计算机集成制造系统 |
PublicationTitle_FL | Computer Integrated Manufacturing Systems |
PublicationYear | 2023 |
Publisher | 西安工程大学 机电工程学院,陕西 西安 710048 |
Publisher_xml | – name: 西安工程大学 机电工程学院,陕西 西安 710048 |
SSID | ssib006563755 ssib023646381 ssib001102950 ssib051375755 ssib023167363 ssib036438063 ssib000459500 ssib002258428 |
Score | 2.387415 |
Snippet | TH165.4%TS111.9;... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 2224 |
Title | 基于特征空间变换的纺纱过程多关联参数质量波动异常检测 |
URI | https://d.wanfangdata.com.cn/periodical/jsjjczzxt202307008 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANNT24kUUFb8p6JxKNDszycwck22WIrYXW-itZJOsWnAFuwXZky1K0aK9KEovQvVQb0or1EX0n3gyu-2_8L3Z2d3B7aEWQng772vevJ28N0PmxXFulFIBaXBac3Na4y6v1oRb9bPETXKWpopmItVFXKdngqk5fnvenx858dt6a2m5Ub2ZNg89V3Icr0Ib-BVPyf6HZ_tCoQFg8C_cwcNwP5KPSewTVSFRSGKOdxmTWBCpSKQQFcWQJ2JLqDSNIkqQiCNKVoiSJA6InCQhRRoF7BwBoETiLgDskkQVIoWWI4mMkD3kSI9yQAtDGlCkepIlRckKUJ5m58gI2kEIYAEFLKgUiEONAsqy5gJA4gU0IcOXMJAYyCI7h0aZYUzCrmkxGoXqyj0bIyIDbZokytNaQGagO-CR0NOmMRJFGohgAHt_Om0H04I1oMoDDCiY1OMLAIgWNg_0EK5Y29s1EKV4hzCDu0AztbdaKOvt4ZrJoc3zcdBxoGN0J4oW2PiPD0KhAXBhMGGNgUBXmB4NsyG1HieFTqBlA4O7eoonhrswgeWZuB3CcI_IVyaEmRhndpW6c1nYAYt2j7Cb5AeSRXpoYMUntY6s6YOHWOWeMl3z1pODPKL_dufi0uJi2mw-aSAZhBQ8iz9GYRkHcWgsnJy-c9deUCjfKhAJyShVvn0yGxJka4EMqw8mBiepKdZxsArI4dcQIKD0Ixb8ZNIb4P0ScAv9KeT-MJlSZGjgrWHz9Fm-ei2p37PSztnTzimzXhwPu5P_jDPSvH_WmSk-tP60XndefC9-rnQ-tw7e7RYb79uvtjqbzzqtVqf1df_XWmd7vfi0WTzf2V95U2ystt9-2d_dPljbaO9sFS-3ix-rxd5e--PT9rf1c85cJZ4tT7nmwyjuEiyHpMtyrlLKEkje84CqwEsTP8tVIkteUkqCIPNT_P425TWaZKUM0tRE5ZInWOyJ1oRk553R-qN6fsEZVzyVuKUR5AwGmkuViVLu-RnNYSEVePlF57qxf8E8-JYWhv176UhUl52Tg1l1xRltPF7Or0JK36heM_-Lv1r0vPM |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E7%89%B9%E5%BE%81%E7%A9%BA%E9%97%B4%E5%8F%98%E6%8D%A2%E7%9A%84%E7%BA%BA%E7%BA%B1%E8%BF%87%E7%A8%8B%E5%A4%9A%E5%85%B3%E8%81%94%E5%8F%82%E6%95%B0%E8%B4%A8%E9%87%8F%E6%B3%A2%E5%8A%A8%E5%BC%82%E5%B8%B8%E6%A3%80%E6%B5%8B&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E9%9B%86%E6%88%90%E5%88%B6%E9%80%A0%E7%B3%BB%E7%BB%9F&rft.au=%E8%83%A1%E8%83%9C&rft.au=%E6%9D%8E%E6%96%87&rft.au=%E8%B5%B5%E5%B0%8F%E6%83%A0&rft.au=%E6%9D%8E%E5%93%B2&rft.date=2023-07-31&rft.pub=%E8%A5%BF%E5%AE%89%E5%B7%A5%E7%A8%8B%E5%A4%A7%E5%AD%A6+%E6%9C%BA%E7%94%B5%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E9%99%95%E8%A5%BF+%E8%A5%BF%E5%AE%89+710048&rft.issn=1006-5911&rft.volume=29&rft.issue=7&rft.spage=2224&rft.epage=2232&rft_id=info:doi/10.13196%2Fj.cims.2023.07.008&rft.externalDocID=jsjjczzxt202307008 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjjczzxt%2Fjsjjczzxt.jpg |