基于GMM的纳米制造刀具磨损状态在线识别

TG71; 为满足纳米制造刀具磨损状态在线诊断对时间和精度的要求,采用跨物理-数据融合建模方案,建立具有物理一致性的高斯混合模型(GMM),以动态识别原子力显微镜(AFM)尖端状态.随机抽取历史加工数据,提取特征参数并进行训练,获得3维GMM模型并预存;以加窗分帧的形式,截取连续过程中短时段纳米加工力时变信号,构成瞬时稳态数据空间;以尖端旋转周期为时间单位,计算横向加工力的特征参数:极大值、峰-峰值和方差;采用马氏距离检测并去除异常值.使用预存的GMM模型,对每帧特征参数聚类,识别尖端磨损状态;根据连续分析帧的尖端失效点数据变化曲线,探测跟踪尖端状态.实验证明该算法平均识别精度为0.8917,...

Full description

Saved in:
Bibliographic Details
Published in计算机集成制造系统 Vol. 30; no. 11; pp. 4075 - 4086
Main Authors 程菲, 江子湛
Format Journal Article
LanguageChinese
Published 安徽信息工程学院大数据与人工智能学院,安徽 芜湖 241000%安徽信息工程学院大数据与人工智能学院,安徽 芜湖 241000 30.11.2024
杭州电子科技大学管理学院,浙江 杭州 310018
Subjects
Online AccessGet full text
ISSN1006-5911
DOI10.13196/j.cims.2022.0350

Cover

Loading…
Abstract TG71; 为满足纳米制造刀具磨损状态在线诊断对时间和精度的要求,采用跨物理-数据融合建模方案,建立具有物理一致性的高斯混合模型(GMM),以动态识别原子力显微镜(AFM)尖端状态.随机抽取历史加工数据,提取特征参数并进行训练,获得3维GMM模型并预存;以加窗分帧的形式,截取连续过程中短时段纳米加工力时变信号,构成瞬时稳态数据空间;以尖端旋转周期为时间单位,计算横向加工力的特征参数:极大值、峰-峰值和方差;采用马氏距离检测并去除异常值.使用预存的GMM模型,对每帧特征参数聚类,识别尖端磨损状态;根据连续分析帧的尖端失效点数据变化曲线,探测跟踪尖端状态.实验证明该算法平均识别精度为0.8917,平均召回率为0.963;每2000个点的最长识别时间为31ms,平均识别时间为23.97ms,适用于大规模纳米制造的刀具磨损在线自动诊断.
AbstractList TG71; 为满足纳米制造刀具磨损状态在线诊断对时间和精度的要求,采用跨物理-数据融合建模方案,建立具有物理一致性的高斯混合模型(GMM),以动态识别原子力显微镜(AFM)尖端状态.随机抽取历史加工数据,提取特征参数并进行训练,获得3维GMM模型并预存;以加窗分帧的形式,截取连续过程中短时段纳米加工力时变信号,构成瞬时稳态数据空间;以尖端旋转周期为时间单位,计算横向加工力的特征参数:极大值、峰-峰值和方差;采用马氏距离检测并去除异常值.使用预存的GMM模型,对每帧特征参数聚类,识别尖端磨损状态;根据连续分析帧的尖端失效点数据变化曲线,探测跟踪尖端状态.实验证明该算法平均识别精度为0.8917,平均召回率为0.963;每2000个点的最长识别时间为31ms,平均识别时间为23.97ms,适用于大规模纳米制造的刀具磨损在线自动诊断.
Abstract_FL To meet the requirements of time and accuracy for online diagnosis of tool wear state in nano-manufacturing,a Cross-Physical Data Fusion(CPDF)scheme was adopted to establish a physically-consistent Gaussian Mixture Model(GMM)to dynamically identify the tip-wear of Atomic Force Microscope(AFM).Historical processing data were randomly selected and feature parameters were extracted and trained to acquire the 3D GMM model and then pre-stored.Through the windowing and framing,the time-varying signals of nano-machining force in a short period of time in the continuous process were intercep-ted to form an instantaneous steady-state data space.Took the tip rotation period as the time unit,the feature parameters of the transverse machining force were calculated,which included the maximum value,peak to peak value and variance.Outliers were detected and removed using Mahalanobis Distance.The pre-stored GMM model was used to cluster the feature parameters in each frame to identify the tip wear state,and the tip state was detected and tracked based on the change curve of tip failure points data in continuous analysis frames.Experiments showed that the average recognition accuracy of the algorithm was 0.8917 and the average recall was 0.963.The longest recognition time per 2000 points was 31MS,and the average recognition time was 23.97ms.All of these findings indicate that GMM was suitable for online automatic diagnosis of tool wear in large-scale nano-manufacturing.
Author 程菲
江子湛
AuthorAffiliation 杭州电子科技大学管理学院,浙江 杭州 310018;安徽信息工程学院大数据与人工智能学院,安徽 芜湖 241000%安徽信息工程学院大数据与人工智能学院,安徽 芜湖 241000
AuthorAffiliation_xml – name: 杭州电子科技大学管理学院,浙江 杭州 310018;安徽信息工程学院大数据与人工智能学院,安徽 芜湖 241000%安徽信息工程学院大数据与人工智能学院,安徽 芜湖 241000
Author_FL JIANG Zizhan
CHENG Fei
Author_FL_xml – sequence: 1
  fullname: CHENG Fei
– sequence: 2
  fullname: JIANG Zizhan
Author_xml – sequence: 1
  fullname: 程菲
– sequence: 2
  fullname: 江子湛
BookMark eNotj8FKwzAch3OY4Jx7AF9BaM0_aZrmKEOnsOFFzyNNE1nRDoyi7FRBpQz0AUSY4GXgQWQwoRdfxi76Fhb09OO7fB-_NdTIRplGaAOwDxREuJX6anhqfYIJ8TFluIGagHHoMQGwitrWDuMaWUg5Y00UVtPyq3zo9vvu8caVc_c-r4rFT_5cFXl1--FeZsv7qZsslvl19TRz5ef3211VvK6jFSNPrG7_bwsd7e4cdva83kF3v7Pd8yxgxj0OKjKJ0CYQUmKmAaiQkSFEBLFKQCdGU841UYEhQhPBIYoEoZjRWAVhhGkLbf55L2VmZHY8SEcXZ1ldHKQ2TdV4fHVeHw0AMOH0F9BmXNM
ClassificationCodes TG71
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.13196/j.cims.2022.0350
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL On-line diagnosis of tip-wear in nano-machining based on Gaussian mixture model
EndPage 4086
ExternalDocumentID jsjjczzxt202411027
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CDYEO
PSX
TCJ
ID FETCH-LOGICAL-s1057-71c8fd9ef49aa05e1139a8f2294bcd1edfe377e2c4f29e297188923053bc46803
ISSN 1006-5911
IngestDate Thu May 29 04:00:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords 纳米加工
高斯混合模型
机器学习
刀具磨损在线诊断
Nano-machining
数据融合集成制造
machine learning
data fusion integrated manufacturing
online diagnosis of tip wear
Gaussian mixture model
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1057-71c8fd9ef49aa05e1139a8f2294bcd1edfe377e2c4f29e297188923053bc46803
PageCount 12
ParticipantIDs wanfang_journals_jsjjczzxt202411027
PublicationCentury 2000
PublicationDate 2024-11-30
PublicationDateYYYYMMDD 2024-11-30
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-30
  day: 30
PublicationDecade 2020
PublicationTitle 计算机集成制造系统
PublicationTitle_FL Computer Integrated Manufacturing Systems
PublicationYear 2024
Publisher 安徽信息工程学院大数据与人工智能学院,安徽 芜湖 241000%安徽信息工程学院大数据与人工智能学院,安徽 芜湖 241000
杭州电子科技大学管理学院,浙江 杭州 310018
Publisher_xml – name: 杭州电子科技大学管理学院,浙江 杭州 310018
– name: 安徽信息工程学院大数据与人工智能学院,安徽 芜湖 241000%安徽信息工程学院大数据与人工智能学院,安徽 芜湖 241000
SSID ssib006563755
ssib023646381
ssib001102950
ssib051375755
ssib023167363
ssib036438063
ssib000459500
ssib002258428
Score 2.433938
Snippet TG71;...
SourceID wanfang
SourceType Aggregation Database
StartPage 4075
Title 基于GMM的纳米制造刀具磨损状态在线识别
URI https://d.wanfangdata.com.cn/periodical/jsjjczzxt202411027
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw3R1NaxNBdKjpxYsoKn5T0DmVrTuzMzszx9lmYxHjxRZ6K9nNrhowgk1BcqqgUgT9ASJU8FLwIFKokIt_xjT6L3xvMk0W00P16GV5efPmfcxb5r23mQ9CbgmjDZM6C7jOw0CYVhFkTKogLBQrIcRDRoH7nZv345U1cXddrs_V2pVVS1u9bCnvH7uv5F-8CjjwK-6S_QvPTpgCAmDwLzzBw_A8kY9pKqlp0MTSVOBTp3eaTZoqagAWCAAyiRzAHCCp1jSJaWpwiYMNPUaPAUkThcQ2olbTNKa6jvwBo63rFSOlZk7usqMZiwAaTW2D6tgztEk163WtKbXMMU-pUcgKOKDmhprEdYyxowmPU1Kh8knigARUOnpNHD9QP0EJGkaCT1titBm1l9TWHV_AoLDqhw4ujg5Y9K-mI0-pNggkKU3qbmwbTvkYbbeOJQyUlRXxToh1OhtDLXcYQe3YUqAP_XgCc2QIvVLvNRyECcMYuyMGCCInfYYzX55VctF1sDim3sx4EbKmEO_glv-dTZVIip-qpPGR1IfaKKxOKawSOEU4vkDHJ2EiHB-QPhPgMWK4CJ8_foKn7XO-hP-NT7OZyRrTzmank_f7z3v4LkGSy9UpMs-hmAxrZN7Wm_ceVMsaIyvHVCK1kdX94ZCmV8p0qIEiNd3PzfE0icoxdngnA4S1SdyEn5EOp-2SQW_lLmSejJJfcIHm3f7TOLefsFu2ug8rqe_qWXLG16wLdjwBnSNz_UfnSTzcHfwYvIMJZ_T-5WiwP_q6P9w5-LX9cbizPXz1bfRp7_Dt7ujNweH2i-GHvdHg-88vr4c7ny-QtUa6urwS-EtYgk28AjxQLNdl2xQlzOOtUBYMSsaWLjk3IsvbrGiXRaRUwXNRclNwA7muhqIRYnuWi1iH0UVS6z7tFpfIQiTaUVaWbZWZSGRx2ZJMZ4wVeUtFuTL8Mrnp7dzwk-zmxqwXr5yI6io5PZ1DrpFa79lWcR3Kh152w3v_N7Mpw_s
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EGMM%E7%9A%84%E7%BA%B3%E7%B1%B3%E5%88%B6%E9%80%A0%E5%88%80%E5%85%B7%E7%A3%A8%E6%8D%9F%E7%8A%B6%E6%80%81%E5%9C%A8%E7%BA%BF%E8%AF%86%E5%88%AB&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E9%9B%86%E6%88%90%E5%88%B6%E9%80%A0%E7%B3%BB%E7%BB%9F&rft.au=%E7%A8%8B%E8%8F%B2&rft.au=%E6%B1%9F%E5%AD%90%E6%B9%9B&rft.date=2024-11-30&rft.pub=%E5%AE%89%E5%BE%BD%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%E5%A4%A7%E6%95%B0%E6%8D%AE%E4%B8%8E%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E5%AD%A6%E9%99%A2%2C%E5%AE%89%E5%BE%BD+%E8%8A%9C%E6%B9%96+241000%25%E5%AE%89%E5%BE%BD%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%E5%A4%A7%E6%95%B0%E6%8D%AE%E4%B8%8E%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E5%AD%A6%E9%99%A2%2C%E5%AE%89%E5%BE%BD+%E8%8A%9C%E6%B9%96+241000&rft.issn=1006-5911&rft.volume=30&rft.issue=11&rft.spage=4075&rft.epage=4086&rft_id=info:doi/10.13196%2Fj.cims.2022.0350&rft.externalDocID=jsjjczzxt202411027
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjjczzxt%2Fjsjjczzxt.jpg