融合熵聚类和增广变邻策略的蚁群优化算法

TP18; 针对蚁群算法求解大规模旅行商问题时存在收敛速度慢、易陷入局部最优的问题,提出一种融合熵聚类和增广变邻策略的蚁群优化算法.首先提出融合信息熵的聚类策略,利用熵确定最佳截断距离对数据集进行合理划分;通过求解每个子簇形成初始路径,并为全局寻优提供导向信息素,从而提升收敛速度.其次提出增广变邻策略,将蚂蚁分为爬行蚁和滑翔蚁,滑翔蚁引入的增广变邻策略在迭代后更新节点和邻居信息素,而且通过邻居数量随最优解质量动态匹配,来强化邻居节点探索,以平衡收敛速度与解的质量.当算法陷入停滞时,利用路径相似性机制平滑非公共路径信息素,帮助算法跳出局部最优.通过对旅行商问题数据集进行实验仿真表明,所提算法有效...

Full description

Saved in:
Bibliographic Details
Published in计算机集成制造系统 Vol. 30; no. 6; pp. 2115 - 2129
Main Authors 李晗珂, 游晓明, 刘升
Format Journal Article
LanguageChinese
Published 上海工程技术大学电子电气工程学院,上海 201620%上海工程技术大学 管理学院,上海 201620 30.06.2024
Subjects
Online AccessGet full text
ISSN1006-5911
DOI10.13196/j.cims.2021.0870

Cover

Abstract TP18; 针对蚁群算法求解大规模旅行商问题时存在收敛速度慢、易陷入局部最优的问题,提出一种融合熵聚类和增广变邻策略的蚁群优化算法.首先提出融合信息熵的聚类策略,利用熵确定最佳截断距离对数据集进行合理划分;通过求解每个子簇形成初始路径,并为全局寻优提供导向信息素,从而提升收敛速度.其次提出增广变邻策略,将蚂蚁分为爬行蚁和滑翔蚁,滑翔蚁引入的增广变邻策略在迭代后更新节点和邻居信息素,而且通过邻居数量随最优解质量动态匹配,来强化邻居节点探索,以平衡收敛速度与解的质量.当算法陷入停滞时,利用路径相似性机制平滑非公共路径信息素,帮助算法跳出局部最优.通过对旅行商问题数据集进行实验仿真表明,所提算法有效平衡了收敛速度与解的精度,尤其对于大规模问题,显著提高了解的质量.
AbstractList TP18; 针对蚁群算法求解大规模旅行商问题时存在收敛速度慢、易陷入局部最优的问题,提出一种融合熵聚类和增广变邻策略的蚁群优化算法.首先提出融合信息熵的聚类策略,利用熵确定最佳截断距离对数据集进行合理划分;通过求解每个子簇形成初始路径,并为全局寻优提供导向信息素,从而提升收敛速度.其次提出增广变邻策略,将蚂蚁分为爬行蚁和滑翔蚁,滑翔蚁引入的增广变邻策略在迭代后更新节点和邻居信息素,而且通过邻居数量随最优解质量动态匹配,来强化邻居节点探索,以平衡收敛速度与解的质量.当算法陷入停滞时,利用路径相似性机制平滑非公共路径信息素,帮助算法跳出局部最优.通过对旅行商问题数据集进行实验仿真表明,所提算法有效平衡了收敛速度与解的精度,尤其对于大规模问题,显著提高了解的质量.
Abstract_FL Aiming at the problems of slow convergence and easy falling into local optimum when ant colony algorithm is used to solve large-scale traveling salesman problem,an ant colony optimization algorithm combining entropy clustering and augmented neighborhood strategy was proposed.A clustering strategy combined with information en-tropy was proposed,which used entropy to determine the best cut-off distance and divide the population reasonably.The initial path was formed by solving each sub-cluster,and the guiding pheromone was provided for global optimi-zation,which improved the convergence speed.An augmented neighbor strategy was proposed,which divided ants into crawling ants and gliding ants.The augmented neighbor strategy introduced by gliding ants updated the phero-mones of nodes and neighbors after iteration,and the number of neighbors dynamically matched with the quality of the optimal solution to strengthen the exploration of neighbor nodes,so as to balance the convergence speed and the quality of the solution.When the algorithm came to a standstill,the path similarity mechanism was used to smooth the non-public path pheromone,which helped the algorithm jump out of the local optimum.The experimental of traveling salesman problem data set showed that the proposed algorithm effectively balanced the convergence speed and the accuracy of the solution,and the quality of the solution was significantly improved especially for large-scale problems.
Author 刘升
李晗珂
游晓明
AuthorAffiliation 上海工程技术大学电子电气工程学院,上海 201620%上海工程技术大学 管理学院,上海 201620
AuthorAffiliation_xml – name: 上海工程技术大学电子电气工程学院,上海 201620%上海工程技术大学 管理学院,上海 201620
Author_FL YOU Xiaoming
LIU Sheng
LI Hanke
Author_FL_xml – sequence: 1
  fullname: LI Hanke
– sequence: 2
  fullname: YOU Xiaoming
– sequence: 3
  fullname: LIU Sheng
Author_xml – sequence: 1
  fullname: 李晗珂
– sequence: 2
  fullname: 游晓明
– sequence: 3
  fullname: 刘升
BookMark eNotj7tKA0EYRqeIYIx5AF9B2HX-nZ1bKcEbBGy0DrO7M5JFN-AoSrqIiEVEERLDFilESwURC4noy7jO-hZGtPo4zTl8c6iSdTKN0AJgHwhItpT6cXvP-gEOwMeC4wqqAsbMoxJgFtWtbUdTpIxwSqtIluOL4urcnb2Uvdw9TYrrfnE7Ll4_isvR98nEPQzd4N7lp2Xec-93n2-joj90jzdfz4N5NGPUrtX1_62h7dWVrca619xc22gsNz0LmHKPMoMZBsEFSBwlUoQJRAGXARMijqWRQkWahYoIYQKuSARUcE2kNjpRIBWpocU_75HKjMp2WmnncD-bFlupTdO42z0-mH4NfyOc_ABKOF_7
ClassificationCodes TP18
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.13196/j.cims.2021.0870
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Ant colony optimization algorithm combining entropy clustering and augmented neighboring strategy
EndPage 2129
ExternalDocumentID jsjjczzxt202406017
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CDYEO
PSX
TCJ
ID FETCH-LOGICAL-s1057-56f0601878190bd984d1b2792688cc9f98abe64a388f27a3b1587e39efeda19a3
ISSN 1006-5911
IngestDate Thu May 29 04:00:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords 增广变邻
entropy clustering
蚁群算法
路径相似性
traveling salesman problem
path similarity
ant colony algorithm
旅行商问题
熵聚类
augmented variable neighborhood
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1057-56f0601878190bd984d1b2792688cc9f98abe64a388f27a3b1587e39efeda19a3
PageCount 15
ParticipantIDs wanfang_journals_jsjjczzxt202406017
PublicationCentury 2000
PublicationDate 2024-06-30
PublicationDateYYYYMMDD 2024-06-30
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-30
  day: 30
PublicationDecade 2020
PublicationTitle 计算机集成制造系统
PublicationTitle_FL Computer Integrated Manufacturing Systems
PublicationYear 2024
Publisher 上海工程技术大学电子电气工程学院,上海 201620%上海工程技术大学 管理学院,上海 201620
Publisher_xml – name: 上海工程技术大学电子电气工程学院,上海 201620%上海工程技术大学 管理学院,上海 201620
SSID ssib006563755
ssib023646381
ssib001102950
ssib051375755
ssib023167363
ssib036438063
ssib000459500
ssib002258428
Score 2.4220433
Snippet TP18;...
SourceID wanfang
SourceType Aggregation Database
StartPage 2115
Title 融合熵聚类和增广变邻策略的蚁群优化算法
URI https://d.wanfangdata.com.cn/periodical/jsjjczzxt202406017
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1Na9RANNT24kUUFb8p6IBQoskkk5l3nOymFFEvttBbSbJZtdAV7BZkbxURDxVFaC099CB6VBDxIBX9M66p_8L3JtPd9OPQirCEtzNvXt5Hdt572Zk3jnMNvDykf5dc-pPLDf0idVURZS66QiqMKbJW26zyvRtNzYS3ZsXsyOj12qqlpW52I-8duK_kX6yKbWhX2iV7BMsOiGIDwmhfvKKF8XooG7NEMUiYarJEMPCYUiyRTEUsFtSlfAaaWmKfxbHB4Uw1CNCcBiIQA4snCVCTDHA4MMUNsmS6ySAiABBfGEAzFZqbaiJOlBOmsSVkccMMF0S_GqUTBpIlyEzAqhMud4JgooC92t-FBg0Wa2IAYhIBW1AcFIpoKhZHhjePac_cN7BM4hUGi5MNmSZTiQHAEJYkmeJ1lFjRx6IEBkBlJUMUc0crDpKT9VcjPNxZx2cfZiM9jteGNGpUGr1KqzONXbGRRhP7laDaqBw1pw0yalpXmg6N6UwLeLUWpOwRfADlwXAgedCwvLGfpQmMwCLuMS7-F7sT1niVFenhi47GS80d0vsmAdYdWn8ZeLV5Ybfzq3bm2kAKgyI40EnTrG-8dP5wgSrmc6qiWx0fs6f2-fzi_Hze6z3pknWpcpA85oxxKWlBxphu3rl9r56agKiVmsSwloOo7_HGULuWamMeE8jhnmxOFSFqpejoXAV0TQPfh18D5Q37hY-jpTlUeaAku2iCxLu5VzizJ7DTTjv3a-Hr9EnnhM07x3U1iZxyRnoPTjuwvfmy__pF-fzr9vJG-Xmr_2al_26z_-1n_9X6n6db5ce1cvVDufFse2O5_PH-1_f1_spa-ent7y-rZ5yZyWS6MeXas1TcRTrJ2xVRm_SnJGUAWQtU2PIzKh4aKZXn0AaVZkUUpoFSbS7TIPOFkkUARbtopT6kwVlntPOoU5xzxumNUwC5EIWAsBV5mWqlgc8L1LeHyWB43rlqRZ2zc-Xi3H5DXjgU1kXn-PCHfckZ7T5eKi5jFtDNrtgH4C8KHbjb
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%9E%8D%E5%90%88%E7%86%B5%E8%81%9A%E7%B1%BB%E5%92%8C%E5%A2%9E%E5%B9%BF%E5%8F%98%E9%82%BB%E7%AD%96%E7%95%A5%E7%9A%84%E8%9A%81%E7%BE%A4%E4%BC%98%E5%8C%96%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E9%9B%86%E6%88%90%E5%88%B6%E9%80%A0%E7%B3%BB%E7%BB%9F&rft.au=%E6%9D%8E%E6%99%97%E7%8F%82&rft.au=%E6%B8%B8%E6%99%93%E6%98%8E&rft.au=%E5%88%98%E5%8D%87&rft.date=2024-06-30&rft.pub=%E4%B8%8A%E6%B5%B7%E5%B7%A5%E7%A8%8B%E6%8A%80%E6%9C%AF%E5%A4%A7%E5%AD%A6%E7%94%B5%E5%AD%90%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E4%B8%8A%E6%B5%B7+201620%25%E4%B8%8A%E6%B5%B7%E5%B7%A5%E7%A8%8B%E6%8A%80%E6%9C%AF%E5%A4%A7%E5%AD%A6+%E7%AE%A1%E7%90%86%E5%AD%A6%E9%99%A2%2C%E4%B8%8A%E6%B5%B7+201620&rft.issn=1006-5911&rft.volume=30&rft.issue=6&rft.spage=2115&rft.epage=2129&rft_id=info:doi/10.13196%2Fj.cims.2021.0870&rft.externalDocID=jsjjczzxt202406017
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjjczzxt%2Fjsjjczzxt.jpg