基于VMD-LILGWO-LSSVM短期风电功率预测

TP391.9; 目的 为了减小风电功率并入国家电网时产生的频率波动,提高风电功率预测精度,方法 提出一种结合变分模态分解(VMD)、改进灰狼算法(LILGWO)和最小二乘支持向量机(LSSVM)的风电功率短期预测方法.首先通过VMD方法将风电功率序列分解重构成3个复杂程度性不同的模态分量,降低风电功率的波动性;其次使用LSSVM挖掘各分量的特征信息,对各分量分别进行预测,针对LSSVM模型中重要参数的选取对预测精度影响较大问题,引入LILGWO对参数进行寻优;最后将各分量预测结果叠加重构,得到最终预测风电功率.结果 以宁夏回族自治区某地区风电站实际数据为例,对未来三天分别进行预测取平均值,本...

Full description

Saved in:
Bibliographic Details
Published in河南理工大学学报(自然科学版) Vol. 43; no. 2; pp. 128 - 136
Main Authors 王瑞, 李虹锐, 逯静, 卜旭辉
Format Journal Article
LanguageChinese
Published 河南理工大学 计算机科学与技术学院,河南 焦作 454000%河南理工大学 电气工程与自动化学院,河南 焦作 454000 01.03.2024
Subjects
Online AccessGet full text
ISSN1673-9787
DOI10.16186/j.cnki.1673-9787.2021110135

Cover

Loading…
Abstract TP391.9; 目的 为了减小风电功率并入国家电网时产生的频率波动,提高风电功率预测精度,方法 提出一种结合变分模态分解(VMD)、改进灰狼算法(LILGWO)和最小二乘支持向量机(LSSVM)的风电功率短期预测方法.首先通过VMD方法将风电功率序列分解重构成3个复杂程度性不同的模态分量,降低风电功率的波动性;其次使用LSSVM挖掘各分量的特征信息,对各分量分别进行预测,针对LSSVM模型中重要参数的选取对预测精度影响较大问题,引入LILGWO对参数进行寻优;最后将各分量预测结果叠加重构,得到最终预测风电功率.结果 以宁夏回族自治区某地区风电站实际数据为例,对未来三天分别进行预测取平均值,本文方法的预测平均绝对误差(mean absolute error,MAE)为 2.706 8 kW,均方根误差(root mean square error,RMSE)为 2.021 1,拟合程度决定系数(R-Square,R2)为 0.976 9,与对比方法 3~6 相比,RMSE分别降低了 40.93%,25.21%,14.7%,6.24%;MAE分别降低了 42.34%,28.04%,16.97%,7.77%;R2 分别提升了 4.21%,1.78%,0.82%,0.28%.预测时长方面,BP和LSSVM平均训练时间分别是10,138 s,虽然LSSVM预测时间较长但效果最好,采用PSO、GWO、LILGWO对LSSVM进行寻优后训练时间分别平均缩短了39,44,58 s.结论 仿真验证了所提方法在短期风电功率预测方面的有效性.
AbstractList TP391.9; 目的 为了减小风电功率并入国家电网时产生的频率波动,提高风电功率预测精度,方法 提出一种结合变分模态分解(VMD)、改进灰狼算法(LILGWO)和最小二乘支持向量机(LSSVM)的风电功率短期预测方法.首先通过VMD方法将风电功率序列分解重构成3个复杂程度性不同的模态分量,降低风电功率的波动性;其次使用LSSVM挖掘各分量的特征信息,对各分量分别进行预测,针对LSSVM模型中重要参数的选取对预测精度影响较大问题,引入LILGWO对参数进行寻优;最后将各分量预测结果叠加重构,得到最终预测风电功率.结果 以宁夏回族自治区某地区风电站实际数据为例,对未来三天分别进行预测取平均值,本文方法的预测平均绝对误差(mean absolute error,MAE)为 2.706 8 kW,均方根误差(root mean square error,RMSE)为 2.021 1,拟合程度决定系数(R-Square,R2)为 0.976 9,与对比方法 3~6 相比,RMSE分别降低了 40.93%,25.21%,14.7%,6.24%;MAE分别降低了 42.34%,28.04%,16.97%,7.77%;R2 分别提升了 4.21%,1.78%,0.82%,0.28%.预测时长方面,BP和LSSVM平均训练时间分别是10,138 s,虽然LSSVM预测时间较长但效果最好,采用PSO、GWO、LILGWO对LSSVM进行寻优后训练时间分别平均缩短了39,44,58 s.结论 仿真验证了所提方法在短期风电功率预测方面的有效性.
Abstract_FL Objectives In order to reduce frequency fluctuations caused by wind power integration into the national grid and improve the accuracy of wind power prediction,Methods a short-term wind power predic-tion method combining variational modal decomposition(VMD),lens imaging learning grey wolf optimizer(LILGWO)and least squares support vector machine(LSSVM)was proposed.Firstly,the wind power se-quence was decomposed into three modal components with different complexity by VMD method to reduce the fluctuation of wind power.Then LSSVM was used to mine the feature information of each component,which was predicted separately.For the problem that the selection of important parameters in LSSVM model had a large impact on the prediction accuracy,LILGWO was introduced to optimize the parameters.Finally,the prediction results of each component were superimposed and reconstructed to obtain the final predicted wind power.Results Taking the actual wind power station data in Ningxia Hui Autonomous Region as an ex-ample,average the predictions for the next three days.The prediction mean absolute error(MAE)of the proposed method in this article was 2.706 8 kW,the root mean square error(RMSE)was 2.0211,and the coefficient of fit determination(R-Square,R2)was 0.976 9.Compared with the comparison methods 3~6 men-tioned in the article,the RMSE of the method decreased by 40.93%,25.21%,14.7%,and 6.24%,respec-tively;MAE decreased by 42.34%,28.04%,16.97%,and 7.77%,respectively;R2 increased by 4.21%,1.78%,0.82%,and 0.28%,respectively.In terms of prediction time,the average training time for BP and LSSVM was 10 seconds and 138 seconds,respectively.Although LSSVM had a longer prediction time,it per-formed the best.PSO,GWO and LILGWO were used to optimize LSSVM,and the training time was short-ened by an average of 39 seconds,44 seconds,and 58 seconds,respectively.Conclusions The effectiveness of the decomposition algorithm proposed in this paper had been verified through comparative experiments.The lens imaging learning grey wolf optimizer algorithm proposed in this paper had excellent optimization ability for the key parameters of least squares support vector machines.The effectiveness of the proposed method in short-term wind power prediction was verified by simulation.
Author 逯静
李虹锐
王瑞
卜旭辉
AuthorAffiliation 河南理工大学 计算机科学与技术学院,河南 焦作 454000%河南理工大学 电气工程与自动化学院,河南 焦作 454000
AuthorAffiliation_xml – name: 河南理工大学 计算机科学与技术学院,河南 焦作 454000%河南理工大学 电气工程与自动化学院,河南 焦作 454000
Author_FL LI Hongrui
BU Xuhui
WANG Rui
LU Jing
Author_FL_xml – sequence: 1
  fullname: WANG Rui
– sequence: 2
  fullname: LI Hongrui
– sequence: 3
  fullname: LU Jing
– sequence: 4
  fullname: BU Xuhui
Author_xml – sequence: 1
  fullname: 王瑞
– sequence: 2
  fullname: 李虹锐
– sequence: 3
  fullname: 逯静
– sequence: 4
  fullname: 卜旭辉
BookMark eNo9j7FKA0EYhLeIYIx5CwubPf9_9_b2tpSoMXAhRUIsw-3ubcgpG_AQo7UgKKSyFA60tkyT5zE58hYeKFbDzAczzAFp-LnPCDlCCDDCODrJA-OvZ7WRnCoZy4ABQ0RALhqk-R_vk3ZRzDTUADgH1iTBplx_r5fj_hlNekn3akCT4XDcr8qv7Xu5-1xWb6vNS1ktn3cfT9vV6yHZc-lNkbX_tEVGF-ejziVNBt1e5zShBYKIqBQMY6FTMFpzxTgz1nIVS6sipkxmQkyNcSJEqdE6FStUjmtnQxEya4G3yPFv7X3qXeqnk3x-d-vrwUn-OF08LHR9LwQGGPEfbYdS-Q
ClassificationCodes TP391.9
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16186/j.cnki.1673-9787.2021110135
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Short-term wind power prediction based on VMD-LILGWO-LSSVM
EndPage 136
ExternalDocumentID jzgxyxb202402016
GrantInformation_xml – fundername: (国家自然科学基金); (河南省科技攻关项目)
  funderid: (国家自然科学基金); (河南省科技攻关项目)
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s1056-752185ba0cbb39232cdd3987d9629cec41accf5417b1df98919f3bfd4542dd03
ISSN 1673-9787
IngestDate Thu May 29 04:07:54 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords 短期预测
wind power
variational mode decomposition
变分模态分解
风电功率
最小二乘支持向量机
改进灰狼算法
lens im-aging learning grey wolf optimizer algorithm
approximate entropy
least squares support vector machine
short-term prediction
近似熵
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1056-752185ba0cbb39232cdd3987d9629cec41accf5417b1df98919f3bfd4542dd03
PageCount 9
ParticipantIDs wanfang_journals_jzgxyxb202402016
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationTitle 河南理工大学学报(自然科学版)
PublicationTitle_FL Journal of Henan Polytechnic University(Natural Science)
PublicationYear 2024
Publisher 河南理工大学 计算机科学与技术学院,河南 焦作 454000%河南理工大学 电气工程与自动化学院,河南 焦作 454000
Publisher_xml – name: 河南理工大学 计算机科学与技术学院,河南 焦作 454000%河南理工大学 电气工程与自动化学院,河南 焦作 454000
SSID ssib010103302
ssj0003314027
ssib006704847
ssib051373601
ssib036434603
ssib031741050
ssib005319289
ssib002423915
ssib011070700
ssib008679455
ssib006595874
Score 2.3464518
Snippet TP391.9; 目的 为了减小风电功率并入国家电网时产生的频率波动,提高风电功率预测精度,方法...
SourceID wanfang
SourceType Aggregation Database
StartPage 128
Title 基于VMD-LILGWO-LSSVM短期风电功率预测
URI https://d.wanfangdata.com.cn/periodical/jzgxyxb202402016
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1NaxUxMNQK4kUUFb-p0JzKPvczH8fse1urtHporb2V_XjbqvAE20LtWRAVevIoPNCzx176e2wf_RfOzO7bjW2RWi9LNplJMh9kZkIyYWy60G6qRR45hej3nTDDHJC-Gzk6KkWain5W0n7HwjMx9yJ8uhKtTEx-sk4tbW1mnXzn1Hsl55Eq1IFc8ZbsP0i26RQqoAzyhS9IGL5nkjFPIq5neWx4EuJXJcsLPWf-yfzjl8-d-cXF5QWeSIQwPZ4IrrtYTjQ3AYBSE6BF2Isy1CSxXkmC8bkKEQsAVGz7sFTp8zggxB7XkrpyuRJYE0tuqE8TciOp0ONGWAWBwyEMTL3LleKJwkGNoQnAlAQWAFd7FhY0aQKusJoNjPGsY5qFx3XStgDNPSJVca15rJEwoFm7LYjGsx6G2AKw2uq2Iq5LvUhioeJxMh653inxw_aoGOn2-bgzg52bhBuPSE8IjSQWm9OYAUxSRBjxEiiogJGOBkYjzSBGv3tyTjM1q-u-kM4ZzJKIb3ZH5yahUSjAd7HcQsNXkYyamTcyJ-2DViyAhor_JsEytEIGjpa1s1Vb4iphV73i-JZZ9eoEApWH5lUpc04Yf3z6gax_PnjzqtOM0AFdAIsOsU7UOj3NUdTXO2vb77cz1BeInDxxgV30IeJ0rd2Z2pPFpxT-MF2-9VADpuVUViQlJJhGK1LHvJZhewXcw-dVrMx7uAvjWpkywavH89ftPwQOoWgPTEReIANRnxhBpzMIPJg_PSU1pvsSmx5z5dFfeEK3FQdlOlizHOulq-xKHRFPmWp5u8Ymdtavs87BcP_X_u7x5Ww0_Hn4bXj0Y3f0de_g83C0-_Ho-4fDvS832NJsstSdc-qnXZwNIEs4EqIGFWWpm2cZRGiBnxdFoJUstPB13s9DL83zMgo9mXlFqZX2dBlkZQFq5BeFG9xkk4O3g_4tNqVTlUPMLXQOgQY4_KkfpnkAUa4IyyzMo9vsYU3ear1yb6wel_mdM8DcZZfbNeUem9x8t9W_D_HIZvaANOU3jG_NAA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EVMD-LILGWO-LSSVM%E7%9F%AD%E6%9C%9F%E9%A3%8E%E7%94%B5%E5%8A%9F%E7%8E%87%E9%A2%84%E6%B5%8B&rft.jtitle=%E6%B2%B3%E5%8D%97%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E7%8E%8B%E7%91%9E&rft.au=%E6%9D%8E%E8%99%B9%E9%94%90&rft.au=%E9%80%AF%E9%9D%99&rft.au=%E5%8D%9C%E6%97%AD%E8%BE%89&rft.date=2024-03-01&rft.pub=%E6%B2%B3%E5%8D%97%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6+%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E6%B2%B3%E5%8D%97+%E7%84%A6%E4%BD%9C+454000%25%E6%B2%B3%E5%8D%97%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6+%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E4%B8%8E%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E9%99%A2%2C%E6%B2%B3%E5%8D%97+%E7%84%A6%E4%BD%9C+454000&rft.issn=1673-9787&rft.volume=43&rft.issue=2&rft.spage=128&rft.epage=136&rft_id=info:doi/10.16186%2Fj.cnki.1673-9787.2021110135&rft.externalDocID=jzgxyxb202402016
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjzgxyxb%2Fjzgxyxb.jpg