基于微波辐射测量和GA-BP神经网络的电缆内部温度反演

TM732; 目的 针对现有电缆监测系统无法实现无损式测量电缆内部温度的问题,方法 提出一种基于微波辐射测量的电缆内部温度反演方法.首先,使用非相干方法构建多层微波辐射传输模型,利用指数函数进行分层,通过无限元仿真得到微波辐射计测量的亮温数据集,应用十折交叉验证划分数据集,为模拟实际测量中微波辐射计测得的亮温值易受环境噪声影响的情况,本文将测试集仿真值混合信噪比10~50 dB的高斯白噪声作为微波辐射计的实测值;然后采用遗传算法(genetic algorithm,GA)优化BP神经网络的权值和阈值,以此构建GA-BP神经网络模型,再向构建好的网络中输入样本,训练网络模型;最后利用实测值验证经...

Full description

Saved in:
Bibliographic Details
Published in河南理工大学学报(自然科学版) Vol. 43; no. 3; pp. 146 - 153
Main Authors 庞恺, 丰励, 郑文超
Format Journal Article
LanguageChinese
Published 湖北工业大学 太阳能高效利用及储能运行控制湖北省重点实验室,湖北 武汉 430068 01.05.2024
Subjects
Online AccessGet full text
ISSN1673-9787
DOI10.16186/j.cnki.1673-9787.2022050029

Cover

Loading…
Abstract TM732; 目的 针对现有电缆监测系统无法实现无损式测量电缆内部温度的问题,方法 提出一种基于微波辐射测量的电缆内部温度反演方法.首先,使用非相干方法构建多层微波辐射传输模型,利用指数函数进行分层,通过无限元仿真得到微波辐射计测量的亮温数据集,应用十折交叉验证划分数据集,为模拟实际测量中微波辐射计测得的亮温值易受环境噪声影响的情况,本文将测试集仿真值混合信噪比10~50 dB的高斯白噪声作为微波辐射计的实测值;然后采用遗传算法(genetic algorithm,GA)优化BP神经网络的权值和阈值,以此构建GA-BP神经网络模型,再向构建好的网络中输入样本,训练网络模型;最后利用实测值验证经过训练的GA-BP神经网络模型在反演电缆内部温度方面的能力.结果 实验结果表明:相较于仅使用BP神经网络,使用遗传算法优化后的BP神经网络在反演电缆内部温度方面表现更优异;网络的反演效果和实测值添加的噪声信噪比呈正相关,噪声信噪比越大,神经网络的反演效果越好;当测试集中添加的噪声信噪比大于36 dB时,R2>0.627,RMSE<5.55,反演效果较好;当混合噪声信噪比为50 dB时,反演效果最优,决定系数可达0.985.结论 结果证明了GA-BP神经网络在电缆内部温度反演的有效性,为电缆内部温度反演提供了新思路.
AbstractList TM732; 目的 针对现有电缆监测系统无法实现无损式测量电缆内部温度的问题,方法 提出一种基于微波辐射测量的电缆内部温度反演方法.首先,使用非相干方法构建多层微波辐射传输模型,利用指数函数进行分层,通过无限元仿真得到微波辐射计测量的亮温数据集,应用十折交叉验证划分数据集,为模拟实际测量中微波辐射计测得的亮温值易受环境噪声影响的情况,本文将测试集仿真值混合信噪比10~50 dB的高斯白噪声作为微波辐射计的实测值;然后采用遗传算法(genetic algorithm,GA)优化BP神经网络的权值和阈值,以此构建GA-BP神经网络模型,再向构建好的网络中输入样本,训练网络模型;最后利用实测值验证经过训练的GA-BP神经网络模型在反演电缆内部温度方面的能力.结果 实验结果表明:相较于仅使用BP神经网络,使用遗传算法优化后的BP神经网络在反演电缆内部温度方面表现更优异;网络的反演效果和实测值添加的噪声信噪比呈正相关,噪声信噪比越大,神经网络的反演效果越好;当测试集中添加的噪声信噪比大于36 dB时,R2>0.627,RMSE<5.55,反演效果较好;当混合噪声信噪比为50 dB时,反演效果最优,决定系数可达0.985.结论 结果证明了GA-BP神经网络在电缆内部温度反演的有效性,为电缆内部温度反演提供了新思路.
Abstract_FL Objectives The current cable monitoring system could not measure the cable internal tempera-ture non-destructively.Methods Therefore,based on microwave radiation measurement,a cable internal tem-perature inversion method was proposed.Firstly,the multilayer microwave radiation transmission model was constructed by using the incoherent approach,and the exponential function was used for layering.The bright temperature data set measured by microwave radiometer was obtained through finite element simulation.The 10-fold cross-validation was applied to divide the data set.To simulate the effect of the environmental noise on microwave radiometer measured brightness temperature in actual measurement,Gaussian noise with SNR ranging from 10~50 dB was added to the calculated value as the measured value for the microwave radiom-eter.After that,the GA-BP neural network model was constructed,and then the network was trained by using the data set.Finally,the inversion performance of the pre-trained GA-BP neural network model was verified by using the measured values.Results The specific conclusions were as follows:Compared with the one that used the BP neural network only,the optimized BP one adopting a genetic algorithm was more effective in the cable internal temperature inversion.The inversion effect of the network and the signal-to-noise ratio(SNR)of added noise were positively correlated.The larger the SNR,the better the inversion effect.When the SNR was greater than 36 dB,the coefficient of determination was greater than 0.627,and the root mean square error was less than 5.55,which indicated that the inversion performed well.The inversion perfor-mance probably attained best when the SNR was 50 dB.The coefficient of determination could reach 0.985.Conclusions The results proved that GA-BP neural network was effective for cable internal temperature in-version,lending a new perspective for cable internal temperature inversion.
Author 丰励
郑文超
庞恺
AuthorAffiliation 湖北工业大学 太阳能高效利用及储能运行控制湖北省重点实验室,湖北 武汉 430068
AuthorAffiliation_xml – name: 湖北工业大学 太阳能高效利用及储能运行控制湖北省重点实验室,湖北 武汉 430068
Author_FL PANG Kai
ZHENG Wenchao
FENG Li
Author_FL_xml – sequence: 1
  fullname: PANG Kai
– sequence: 2
  fullname: FENG Li
– sequence: 3
  fullname: ZHENG Wenchao
Author_xml – sequence: 1
  fullname: 庞恺
– sequence: 2
  fullname: 丰励
– sequence: 3
  fullname: 郑文超
BookMark eNrjYmDJy89LZWBQMTTQMzQztDDTz9JLzsvOBHLMjXUtzS3M9YwMjIwMTA0MjCxZGDjhwhwMvMXFmUkGhkBobGxgxMng_nT-rie7-p7uW_ds86IX-yY83dDybGv3y_b-p5N63B11nQKeL533fHf_870Tn--e83xWy_MpW5_vaXva1vqyecWzHSuf7lr2tL_32Z4pPAysaYk5xam8UJqbIdTNNcTZQ9fH393T2dFHt9jQwNRM1yTFPM3SNDUpxcww0TTZ1CIt0dzEwDzJ0jzNzNLEPDXJ0izRNCUlyTLFzMLYKC3JxCDJ0sLcOMUw1dA4KSXVMMmYm0EDYm55Yl5aYl56fFZ-aVEe0Mb4rKr0isqKJKDHTQyMDQzNjAFCJ2p_
ClassificationCodes TM732
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16186/j.cnki.1673-9787.2022050029
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Inversion of cable internal temperature based on microwave radiation measurement and GA-BP neural network
EndPage 153
ExternalDocumentID jzgxyxb202403016
GrantInformation_xml – fundername: (国家自然科学基金); 太阳能高效利用; (储能运行控制湖北省重点实验室开放基金); (湖北工业大学博士科研启动基金资助项目)
  funderid: (国家自然科学基金); 太阳能高效利用; (储能运行控制湖北省重点实验室开放基金); (湖北工业大学博士科研启动基金资助项目)
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s1056-4d7f95ebd61a5c58fa7407b97f6947eb96a5ddb9d6832fb40b9873d1e13bde1b3
ISSN 1673-9787
IngestDate Thu May 29 04:07:54 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords genetic algorithm
multilayer cable microwave radiation t-ransmission model
遗传算法
BP neural network
BP神经网络
多层电缆微波辐射传输模型
non-uniform stratification
internal cable temperature
电缆内部温度
非均匀分层
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1056-4d7f95ebd61a5c58fa7407b97f6947eb96a5ddb9d6832fb40b9873d1e13bde1b3
PageCount 8
ParticipantIDs wanfang_journals_jzgxyxb202403016
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationTitle 河南理工大学学报(自然科学版)
PublicationTitle_FL Journal of Henan Polytechnic University(Natural Science)
PublicationYear 2024
Publisher 湖北工业大学 太阳能高效利用及储能运行控制湖北省重点实验室,湖北 武汉 430068
Publisher_xml – name: 湖北工业大学 太阳能高效利用及储能运行控制湖北省重点实验室,湖北 武汉 430068
SSID ssib010103302
ssj0003314027
ssib006704847
ssib051373601
ssib036434603
ssib031741050
ssib005319289
ssib002423915
ssib011070700
ssib008679455
ssib006595874
Score 2.3529837
Snippet TM732; 目的 针对现有电缆监测系统无法实现无损式测量电缆内部温度的问题,方法...
SourceID wanfang
SourceType Aggregation Database
StartPage 146
Title 基于微波辐射测量和GA-BP神经网络的电缆内部温度反演
URI https://d.wanfangdata.com.cn/periodical/jzgxyxb202403016
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3JahRBtIkRxIsoKu5ESJ1Cx16qazlWz_QkCIqHBHILU9PTbjCKSSDmaowHl6jkJKIgKHoRQQKSxHyNM2P-wvfe9PS0Jkj0Urx5VfXWmqpX1bU4zmjG67qe-g03kta63HratQ0_c0ORKYnxvqVLkq5cFZPT_PJMNDM0fLe0a2lh3o43lvY8V_I_XgUc-BVPyf6DZwuigAAY_AspeBjSffmYJRHTNRYblnBMVYKYOGEGAMHikJmAJQox2qMsjylOWRFTMUs0U5KpGtEJmKpMGDe-xhLJDCASBOKY8gGoMu3nGF1BQBsiBgBHephVYUogMUhVRORBBEUMFTOaRDDM9MrUmKpSVoX1XiDuB8mEDFB8LAZ8JXHxcuIxiQeA4cxIAqo5zRwA7obK1EgkhTYARY1BOiBzLEhHSRoVtSBLU-FerWKFJJdak02VzwZLG2R2hVZFQQ2L_UEO6Y70BdMCuaMf0CzldZaAD3Y10j-DVNdYAylWSPVCY2IGVt-l-lgfZZCvVmQ6hQKA1wBjYkSiJBEpSCm6g3xnVN8dRFoFhCmqA7UaNR-o4qNMaIUkZ69IqT2ElthIwFh5E6uSeQMshqImZE2NAiNBwoD8QWU3qTFEFX6NQQI9xkM8c1QaT4UMXS3zmCofcHv3cuUdS1gaPfur0b1AzO_dIr1rjMcXHmiQb7Ru3xwvOIwHdGgcPzMPYptix-mtpeuL9xctOhYXAcQB52AAE8ugtAiTB6z4YsJvI1RQeo8Bb99UpQmTkDAClibkeH0lH5z09vEVldIFe7jY4pUuxITgHbdZD37D_ICLwb6IyA9lKPKNIRhbhqHPPXqHutD7kDPat8qlv9iEDiW2snrreil-njrqHMknviOm14sdc4aWbhx3JtpvN35sPGtvf-58ffdz-3n7y3Jn_fHOo9X2yyfUF3Xfv-lurna_v-huvu6-Wu6urXe3VtorD3cefOx8-9Te-NBefdrZWjvhTNeSqcqkmz_t4s6BvsLlqcx01LSp8OtRI1JZXXJPWi0zoblsWi3qUZpanQqIODLLPauVDFO_6Yc2bfo2POkMt-60mqecEZHhnZ0284NGnaeeqkvdwHWfVKfgaO2fdi7mis_mXffc7J-t4cw-ypx1Dg-6hXPO8Py9heZ5mJDM2wvUhn4BdAncrA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%BE%AE%E6%B3%A2%E8%BE%90%E5%B0%84%E6%B5%8B%E9%87%8F%E5%92%8CGA-BP%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E7%94%B5%E7%BC%86%E5%86%85%E9%83%A8%E6%B8%A9%E5%BA%A6%E5%8F%8D%E6%BC%94&rft.jtitle=%E6%B2%B3%E5%8D%97%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E5%BA%9E%E6%81%BA&rft.au=%E4%B8%B0%E5%8A%B1&rft.au=%E9%83%91%E6%96%87%E8%B6%85&rft.date=2024-05-01&rft.pub=%E6%B9%96%E5%8C%97%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6+%E5%A4%AA%E9%98%B3%E8%83%BD%E9%AB%98%E6%95%88%E5%88%A9%E7%94%A8%E5%8F%8A%E5%82%A8%E8%83%BD%E8%BF%90%E8%A1%8C%E6%8E%A7%E5%88%B6%E6%B9%96%E5%8C%97%E7%9C%81%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E6%B9%96%E5%8C%97+%E6%AD%A6%E6%B1%89+430068&rft.issn=1673-9787&rft.volume=43&rft.issue=3&rft.spage=146&rft.epage=153&rft_id=info:doi/10.16186%2Fj.cnki.1673-9787.2022050029&rft.externalDocID=jzgxyxb202403016
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjzgxyxb%2Fjzgxyxb.jpg