Alpha稳定分布噪声下基于特征值之差频谱感知算法

TN92; 针对基于特征值的谱感知算法在脉冲噪声的环境下感知性能不佳的问题,分析矩阵全部的特征值,引入矩阵特征值的几何均值,提出了基于分数低阶协方差矩阵的最大特征值与特征值几何均值之差(difference between maximum eigenvalue and geometric mean of eigenvalue,DMGM)的频谱感知算法.选择了 Alpha 稳定分布噪声模拟脉冲噪声环境,理论分析与仿真实验结果表明,在不增加算法复杂度的前提下,DMGM算法与其他算法相比,更适用于脉冲噪声环境,在低信噪比条件下具有更好的感知性能....

Full description

Saved in:
Bibliographic Details
Published in系统工程与电子技术 Vol. 45; no. 9; pp. 2949 - 2955
Main Authors 陈增茂, 汪楷淋, 孙志国, 孙溶辰, 阿尔斯楞
Format Journal Article
LanguageChinese
Published 哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001 2023
哈尔滨工程大学工业和信息化部先进船舶通信与信息技术重点实验室,黑龙江哈尔滨150001%哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001
Subjects
Online AccessGet full text

Cover

Loading…
Abstract TN92; 针对基于特征值的谱感知算法在脉冲噪声的环境下感知性能不佳的问题,分析矩阵全部的特征值,引入矩阵特征值的几何均值,提出了基于分数低阶协方差矩阵的最大特征值与特征值几何均值之差(difference between maximum eigenvalue and geometric mean of eigenvalue,DMGM)的频谱感知算法.选择了 Alpha 稳定分布噪声模拟脉冲噪声环境,理论分析与仿真实验结果表明,在不增加算法复杂度的前提下,DMGM算法与其他算法相比,更适用于脉冲噪声环境,在低信噪比条件下具有更好的感知性能.
AbstractList TN92; 针对基于特征值的谱感知算法在脉冲噪声的环境下感知性能不佳的问题,分析矩阵全部的特征值,引入矩阵特征值的几何均值,提出了基于分数低阶协方差矩阵的最大特征值与特征值几何均值之差(difference between maximum eigenvalue and geometric mean of eigenvalue,DMGM)的频谱感知算法.选择了 Alpha 稳定分布噪声模拟脉冲噪声环境,理论分析与仿真实验结果表明,在不增加算法复杂度的前提下,DMGM算法与其他算法相比,更适用于脉冲噪声环境,在低信噪比条件下具有更好的感知性能.
Author 汪楷淋
陈增茂
孙志国
阿尔斯楞
孙溶辰
AuthorAffiliation 哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001;哈尔滨工程大学工业和信息化部先进船舶通信与信息技术重点实验室,黑龙江哈尔滨150001%哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001
AuthorAffiliation_xml – name: 哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001;哈尔滨工程大学工业和信息化部先进船舶通信与信息技术重点实验室,黑龙江哈尔滨150001%哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001
Author_FL SUN Zhiguo
CHEN Zengmao
SUN Rongchen
AER Sileng
WANG Kailin
Author_FL_xml – sequence: 1
  fullname: CHEN Zengmao
– sequence: 2
  fullname: WANG Kailin
– sequence: 3
  fullname: SUN Zhiguo
– sequence: 4
  fullname: SUN Rongchen
– sequence: 5
  fullname: AER Sileng
Author_xml – sequence: 1
  fullname: 陈增茂
– sequence: 2
  fullname: 汪楷淋
– sequence: 3
  fullname: 孙志国
– sequence: 4
  fullname: 孙溶辰
– sequence: 5
  fullname: 阿尔斯楞
BookMark eNo9jz1Lw0Ach2-oYK39Fk5C4v_ucpdkDMU3KLgouJVLcqkNJRVP8WVSFFEKgoOILgFFEIdQ6WBbxE-Ta_RbWFGcHniG58dvBpWSTiIRmsNgYkKBLcRmS6nExADYYMA3TQKEmuCalJVQ-V9Po6pSLR8YpjYD2yojz2tvb4niua-ze31xrgen-u5FP_byQVeno3x0VVwO9ceJPn7Ph139ln09XH_2XsdnaZE-FdntuH8zi6Yi0Vay-scK2lhaXK-tGPW15dWaVzcUBsYM6Qchs6kgEZbcIq6kgjmB5BF3XZ-GgtOQOxb2wQ2JdIgQ0rIwt61IUjLREa2g-d_uvkgikTQbcWdvJ5ksNg52m8FheBSrn9PgAmX0G5lYZ74
ClassificationCodes TN92
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12305/j.issn.1001-506X.2023.09.35
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Eigenvalue difference spectrum sensing algorithm under Alpha stable distributed noise
EndPage 2955
ExternalDocumentID xtgcydzjs202309035
GrantInformation_xml – fundername: 国家自然科学基金
  funderid: (62001139)
GroupedDBID -0Y
2B.
4A8
5XA
5XJ
92E
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
PSX
TCJ
TGP
U1G
U5S
ID FETCH-LOGICAL-s1055-ebcd573a2f1e6429e3a58ce6f699b3da63d6841b09d2e82aae441674fe3241bf3
ISSN 1001-506X
IngestDate Thu May 29 04:00:31 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Keywords 频谱感知
分数低阶矩
Alpha稳定分布
sampling covariance
几何均值
spectrum sensing
fractional low order moments
Alpha stable distributed
采样协方差
geometric mean
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1055-ebcd573a2f1e6429e3a58ce6f699b3da63d6841b09d2e82aae441674fe3241bf3
PageCount 7
ParticipantIDs wanfang_journals_xtgcydzjs202309035
PublicationCentury 2000
PublicationDate 2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023
PublicationDecade 2020
PublicationTitle 系统工程与电子技术
PublicationTitle_FL Systems Engineering and Electronics
PublicationYear 2023
Publisher 哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001
哈尔滨工程大学工业和信息化部先进船舶通信与信息技术重点实验室,黑龙江哈尔滨150001%哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001
Publisher_xml – name: 哈尔滨工程大学工业和信息化部先进船舶通信与信息技术重点实验室,黑龙江哈尔滨150001%哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001
– name: 哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001
SSID ssib051375074
ssib002263377
ssib001102898
ssib057620160
ssib023168126
ssib023646287
ssj0042237
Score 2.3564765
Snippet TN92; 针对基于特征值的谱感知算法在脉冲噪声的环境下感知性能不佳的问题,分析矩阵全部的特征值,引入矩阵特征值的几何均值,提出了基于分数低阶协方差矩阵的最大特征值与特征值几何均值之差(difference between maximum eigenvalue and geometric mean of...
SourceID wanfang
SourceType Aggregation Database
StartPage 2949
Title Alpha稳定分布噪声下基于特征值之差频谱感知算法
URI https://d.wanfangdata.com.cn/periodical/xtgcydzjs202309035
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFB_6AaIH8RO_Kdgct-5MJpnkmGxnKaJebKG3Mp8VDyvYLWhPiiJKQfAgopeCIoiHUunBtoh_Taer_4T4XjK7M9hVai_DY_LmffyyM3kvm7w4zmQWM5bGNGqkUZQ3_KTpN6TvJfjvYxPiiSgI7ALZW3xmzr8-z-ZHRn_VVi0td-OpZGXovpLD9Crcg37FXbL_0bMDoXADaOhfuEIPw_VAfaxwoywJA6IE0ZSEjKiQSIWEEERwJDQQpklKokyTokQ3SeibJm2a2kQrc0cREaJAIYmW5vEQYk0jsEl0y_DI8ikdoLoQxHpEAo9AsRoIToSPMkEOXBUzFoJhATaBnfa8y35IjK1wU2tDaPOgFc5K11CdtdbYJoFmxpFpIptGnULzgJAtogZLldE0cBqQQF6wMUQbRYsIr2LhaDHiwlGftiaC_7pisYosGm3jBSCmiZ4ewsIRQs0NGCHgUZ9UsTuezQtgRNDSNEANXMJHNXo7xHkQ7xMVlHoUN3AAshZrsL9dA0iaxSuqxjNUoJVjEAJsvBbSiL5riLDvjVv2x1-sdfGkC7c2suHaOdY0x0YOhj5bybN8xWV9HJO2kGwZE3nS1lLeN95CAsvMgIs6pgY6phBTrB9sS9H8UdH8QXcxeZiu3F1CLpwnZKPOuAdpHgys42r65o3bVUCP8W9tQgCSBUqrndMeHrvmVgkEnobAvSrhYC6FiLhKcCC59rCkYj9W8yE4Nscv9Q0_4kz23br2D6fMDr9OHnUWa8Ho7AnneJlFTij7STjpjKzcOeUcq9UWPe0o83Hofdos1t8Vz58VW0-Kt5-LDxu7W6vF2s7uzsvei-3i--Pi0bfd7dXi6_rP969-bHzZe7rWW_vYW3-zt_n6jDPXDmdbM43yvJTGEh5z28jiJGUBjbzczTjEmRmNmEgynnMpY5pGnKZc-G7clKmXCS-KMsiFeODnGWRVbpzTs85Y514nO-dMRBHLaEZjFmM5J7gI0JBAbJ9FPs1T77xztQRgofweLi3s79YLB-K66BxF2s5rXnLGuveXs8sQ6XfjK-XP4Tdk2r2v
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alpha%E7%A8%B3%E5%AE%9A%E5%88%86%E5%B8%83%E5%99%AA%E5%A3%B0%E4%B8%8B%E5%9F%BA%E4%BA%8E%E7%89%B9%E5%BE%81%E5%80%BC%E4%B9%8B%E5%B7%AE%E9%A2%91%E8%B0%B1%E6%84%9F%E7%9F%A5%E7%AE%97%E6%B3%95&rft.jtitle=%E7%B3%BB%E7%BB%9F%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF&rft.au=%E9%99%88%E5%A2%9E%E8%8C%82&rft.au=%E6%B1%AA%E6%A5%B7%E6%B7%8B&rft.au=%E5%AD%99%E5%BF%97%E5%9B%BD&rft.au=%E5%AD%99%E6%BA%B6%E8%BE%B0&rft.date=2023&rft.pub=%E5%93%88%E5%B0%94%E6%BB%A8%E5%B7%A5%E7%A8%8B%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E4%B8%8E%E9%80%9A%E4%BF%A1%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E9%BB%91%E9%BE%99%E6%B1%9F%E5%93%88%E5%B0%94%E6%BB%A8150001&rft.issn=1001-506X&rft.volume=45&rft.issue=9&rft.spage=2949&rft.epage=2955&rft_id=info:doi/10.12305%2Fj.issn.1001-506X.2023.09.35&rft.externalDocID=xtgcydzjs202309035
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxtgcydzjs%2Fxtgcydzjs.jpg