基于模糊贝叶斯网络的电力设备故障诊断和状态评估

C931.2%TM07; 针对电力设备在运行过程中故障程度模糊和全景状态的不确定问题,提出一种融合模糊函数改进的贝叶斯网络故障诊断和状态评估方法.在该网络中,采用贝叶斯概率测度多维特征指标与不同故障之间的关联性,构造时变评分函数整合具有不同时效性的特征信息,量化故障发生的模糊状态.另外,基于危害性对故障进行分级,在网络中融合多个模糊函数,分别描述不同故障对应连续变化的模糊状态在全景状态评估中的模糊重要性;在此基础上,计算设备运行的综合评分值,推测其所处的状态等级和潜在故障.最后,以500 kV油浸式电力变压器为例对所提方法的有效性进行实验和分析,结果显示该方法的应用准确率远高于现有的线性评价方...

Full description

Saved in:
Bibliographic Details
Published in计算机集成制造系统 Vol. 27; no. 1; pp. 63 - 71
Main Authors 耿苏杰, 王秀利
Format Journal Article
LanguageChinese
Published 南京理工大学 经济管理学院 ,江苏 南京 210094 2021
Subjects
Online AccessGet full text
ISSN1006-5911
DOI10.13196/j.cims.2021.01.005

Cover

More Information
Summary:C931.2%TM07; 针对电力设备在运行过程中故障程度模糊和全景状态的不确定问题,提出一种融合模糊函数改进的贝叶斯网络故障诊断和状态评估方法.在该网络中,采用贝叶斯概率测度多维特征指标与不同故障之间的关联性,构造时变评分函数整合具有不同时效性的特征信息,量化故障发生的模糊状态.另外,基于危害性对故障进行分级,在网络中融合多个模糊函数,分别描述不同故障对应连续变化的模糊状态在全景状态评估中的模糊重要性;在此基础上,计算设备运行的综合评分值,推测其所处的状态等级和潜在故障.最后,以500 kV油浸式电力变压器为例对所提方法的有效性进行实验和分析,结果显示该方法的应用准确率远高于现有的线性评价方法.
ISSN:1006-5911
DOI:10.13196/j.cims.2021.01.005