基于深层神经网络的信道编码类型盲识别

TN911.7; 为了解决当前识别算法只能识别一种或者两种码字类型以及人工提取特征复杂的问题,提出了两种基于深层神经网络模型的信道编码类型识别器,即卷积神经网络(convolutional neural network,CNN)识别器和递归CNN(recursive CNN,RCNN)识别器,用于识别接收数据中不同类型的信道码字.将待识别的软解调序列作为自然语言处理中文本分类问题的句子向量进行处理,输入到预先训练好的深层神经网络识别器中进行识别,并分析了字长度对识别准确率的影响,得出了最合适的字长度.实验结果表明,两种识别器都能够有效识别接收数据中多种类型的信道编码,且在信噪比为3 dB时CN...

Full description

Saved in:
Bibliographic Details
Published in系统工程与电子技术 Vol. 46; no. 5; pp. 1820 - 1829
Main Authors 杨宗方, 张天骐, 马焜然, 邹涵
Format Journal Article
LanguageChinese
Published 重庆邮电大学信号与信息处理重庆市重点实验室,重庆 400065 01.05.2024
重庆邮电大学通信与信息工程学院,重庆 400065
Subjects
Online AccessGet full text
ISSN1001-506X
DOI10.12305/j.issn.1001-506X.2024.05.35

Cover

Loading…
Abstract TN911.7; 为了解决当前识别算法只能识别一种或者两种码字类型以及人工提取特征复杂的问题,提出了两种基于深层神经网络模型的信道编码类型识别器,即卷积神经网络(convolutional neural network,CNN)识别器和递归CNN(recursive CNN,RCNN)识别器,用于识别接收数据中不同类型的信道码字.将待识别的软解调序列作为自然语言处理中文本分类问题的句子向量进行处理,输入到预先训练好的深层神经网络识别器中进行识别,并分析了字长度对识别准确率的影响,得出了最合适的字长度.实验结果表明,两种识别器都能够有效识别接收数据中多种类型的信道编码,且在信噪比为3 dB时CNN识别器的识别准确率能够达到99%以上,而RCNN识别器在1 dB时就能够达到99%以上的识别准确率.
AbstractList TN911.7; 为了解决当前识别算法只能识别一种或者两种码字类型以及人工提取特征复杂的问题,提出了两种基于深层神经网络模型的信道编码类型识别器,即卷积神经网络(convolutional neural network,CNN)识别器和递归CNN(recursive CNN,RCNN)识别器,用于识别接收数据中不同类型的信道码字.将待识别的软解调序列作为自然语言处理中文本分类问题的句子向量进行处理,输入到预先训练好的深层神经网络识别器中进行识别,并分析了字长度对识别准确率的影响,得出了最合适的字长度.实验结果表明,两种识别器都能够有效识别接收数据中多种类型的信道编码,且在信噪比为3 dB时CNN识别器的识别准确率能够达到99%以上,而RCNN识别器在1 dB时就能够达到99%以上的识别准确率.
Abstract_FL In order to solve the problem that the current recognition algorithm can only recognize one or two code types and the complexity of manually extracting features,two channel coding type recognizers based on the deep neural network model are proposed,namely,convolutional neural network(CNN)recognizer and recursive CNN(RCNN)recognizer,used to identify different types of channel codewords in received data.The soft demodulation sequence to be recognized is treated as the sentence vector of text classification in natural language processing,input into the pre trained deep neural network recognizer for recognition,and analyze the influence of word length on recognition accuracy,and obtain the most appropriate word length.The experimental results show that both types of recognizers can effectively recognize various types of channel codes in the received data,and the recognition accuracy of the CNN recognizer can reach over 99%when the signal-to-noise ratio is 3 dB,while the RCNN recognizer can achieve over 99%recognition accuracy at 1 dB.
Author 杨宗方
邹涵
张天骐
马焜然
AuthorAffiliation 重庆邮电大学通信与信息工程学院,重庆 400065;重庆邮电大学信号与信息处理重庆市重点实验室,重庆 400065
AuthorAffiliation_xml – name: 重庆邮电大学通信与信息工程学院,重庆 400065;重庆邮电大学信号与信息处理重庆市重点实验室,重庆 400065
Author_FL ZOU Han
YANG Zongfang
ZHANG Tianqi
MA Kunran
Author_FL_xml – sequence: 1
  fullname: YANG Zongfang
– sequence: 2
  fullname: ZHANG Tianqi
– sequence: 3
  fullname: MA Kunran
– sequence: 4
  fullname: ZOU Han
Author_xml – sequence: 1
  fullname: 杨宗方
– sequence: 2
  fullname: 张天骐
– sequence: 3
  fullname: 马焜然
– sequence: 4
  fullname: 邹涵
BookMark eNo9j7tKA0EYRqeIYIx5Cythx39m9p_dLSV4g4CNgl3Y3ZkJCbIBR_HSRUQEQRHBQiVqYWUhayNkFV8m6-hbqChWH5ziHL4JUsl6mSZkigFlXADOdGnH2owyAOYhyDXKgfsUkAqskOo_Hid1azsJIBMBQuBXiSxvhqPhyftzXub77n7gilP3euaKa3d5MHq7--yfu5cLd9t3eVEOjt3V08fjYXn0MEnGTLxudf1va2R1fm6lseg1lxeWGrNNzzJA9FhqYqlkaEBLrjGMTWKEDAMJqWAq0lzpNOFaR5wbP4yEVAyMUagjVCoNtaiR6V_vdpyZOGu3ur2tjey72NrZbKe7aq9rf54CgkDxBQefYkU
ClassificationCodes TN911.7
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12305/j.issn.1001-506X.2024.05.35
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Blind identification of channel coding types based on deep neural networks
EndPage 1829
ExternalDocumentID xtgcydzjs202405035
GrantInformation_xml – fundername: (国家自然科学基金); (国家自然科学基金); (国家自然科学基金); (国家自然科学基金); (信号与信息处理重庆市市级重点实验室建设项目); (重庆市自然基金项目); (重庆市教育委员会科研项目); (重庆市教育委员会科研项目)
  funderid: (国家自然科学基金); (国家自然科学基金); (国家自然科学基金); (国家自然科学基金); (信号与信息处理重庆市市级重点实验室建设项目); (重庆市自然基金项目); (重庆市教育委员会科研项目); (重庆市教育委员会科研项目)
GroupedDBID -0Y
2B.
4A8
5XA
5XJ
92E
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
PSX
TCJ
TGP
U1G
U5S
ID FETCH-LOGICAL-s1055-1cfa6d68f0e62e58afbf368760c31d9e2decb2ee922f48936d10ffd5e95ddc8e3
ISSN 1001-506X
IngestDate Thu May 29 04:00:31 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords channel code recognizer
blind identification
信道编码识别器
字长度
word length
盲识别
深层神经网络
deep neural networks
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1055-1cfa6d68f0e62e58afbf368760c31d9e2decb2ee922f48936d10ffd5e95ddc8e3
PageCount 10
ParticipantIDs wanfang_journals_xtgcydzjs202405035
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationTitle 系统工程与电子技术
PublicationTitle_FL Systems Engineering and Electronics
PublicationYear 2024
Publisher 重庆邮电大学信号与信息处理重庆市重点实验室,重庆 400065
重庆邮电大学通信与信息工程学院,重庆 400065
Publisher_xml – name: 重庆邮电大学信号与信息处理重庆市重点实验室,重庆 400065
– name: 重庆邮电大学通信与信息工程学院,重庆 400065
SSID ssib051375074
ssib002263377
ssib001102898
ssib057620160
ssib023168126
ssib023646287
ssj0042237
Score 2.4049616
Snippet TN911.7; 为了解决当前识别算法只能识别一种或者两种码字类型以及人工提取特征复杂的问题,提出了两种基于深层神经网络模型的信道编码类型识别器,即卷积神经网络(convolutional neural network,CNN)识别器和递归CNN(recursive...
SourceID wanfang
SourceType Aggregation Database
StartPage 1820
Title 基于深层神经网络的信道编码类型盲识别
URI https://d.wanfangdata.com.cn/periodical/xtgcydzjs202405035
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBcMgDRA_iE98EtE8ycaZnuqf72LM7QxDjxQRyCzuvqIcVzAY0t4iIICgieFCJevDkQeJFSBR_JuvoxW-wqnZ2Z0iCRGFpaqurqruqdqerhu5qy7rkOkkWiI5rF6no2D4vhN3xdWLzVCbSwXrgEs87z16XM_P-1QWxMDb-u7FraaWXTKere54r-R-vAg78iqdk_8GzI6GAABj8Cy14GNp9-ZhFgumYhYZFPrYqYpFkYcBCF7ugVZxFATNAFiEQhkzFBLSZdiuMbiGggd0nOTEz0KUhxmTaI5oW05LkOIiMSD4wRiRWhcQeshDGUszETEnsUgCHzdiXGD1iHIwb0yRpeihckSiYgCJFQCbAAmkMzNZB1ZTBnRkAwJzNaE8yIdooAGkjpgPCgCV0TSJQDVAASXxmNGpoDNNOTaIRbcgaYAo9BELZJAGLhprMDB_RfGnC_XqLIv3MiRxEtGl0Q3YhAWaHejCfoNLTyIYPBHoLDFQbZdQl0RMmrtjRcwHaqBpix6CC2HmjKxjqMTBYVFlDtSoMyOSt3aIu-xRNNlYy3CsnHLomcrTUVW97bzU3E9C6hWX8GzEQfNV7rq-QsApaYHGM6dEY02hjrIA7KD2zo4L5vd5Sej9bvb2MVFh_SIxbkzwIcFvFpGnPXrtRB_AY7zZeAEBy4Hn1SWmO16y5dcKAtx9IXicYwvUgAq4TGkimOZZQHMZmPgTDdN3ScOIH8Gk1UOvKX5SiE33dotNdagSfc0esw1XWOGUGj4Cj1tjqzWPWoUYt0eOW7L_d3N58-uPLRn_jQflhvdx6Vn57Xm69KV893P7-_tfai_Lry_LdWrmx1V9_Ur7-_PPTo_7jjyes-Tiaa83Y1aUo9jLeZWu7adGRmVSFk0ueC9UpksKTENM4qedmOudZniY8zzXnBRaWkpnrFEUmci2yLFW5d9Ka6N7p5qesqTTLZZBKIfIg9V23o4Hc82QQpJCVuGly2rpYab1YPfSWF3f78sy-qM5aB-v_4Tlrond3JT8P4XwvuVD9Bv4Auk2zjQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B7%B1%E5%B1%82%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E4%BF%A1%E9%81%93%E7%BC%96%E7%A0%81%E7%B1%BB%E5%9E%8B%E7%9B%B2%E8%AF%86%E5%88%AB&rft.jtitle=%E7%B3%BB%E7%BB%9F%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF&rft.au=%E6%9D%A8%E5%AE%97%E6%96%B9&rft.au=%E5%BC%A0%E5%A4%A9%E9%AA%90&rft.au=%E9%A9%AC%E7%84%9C%E7%84%B6&rft.au=%E9%82%B9%E6%B6%B5&rft.date=2024-05-01&rft.pub=%E9%87%8D%E5%BA%86%E9%82%AE%E7%94%B5%E5%A4%A7%E5%AD%A6%E4%BF%A1%E5%8F%B7%E4%B8%8E%E4%BF%A1%E6%81%AF%E5%A4%84%E7%90%86%E9%87%8D%E5%BA%86%E5%B8%82%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E9%87%8D%E5%BA%86+400065&rft.issn=1001-506X&rft.volume=46&rft.issue=5&rft.spage=1820&rft.epage=1829&rft_id=info:doi/10.12305%2Fj.issn.1001-506X.2024.05.35&rft.externalDocID=xtgcydzjs202405035
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxtgcydzjs%2Fxtgcydzjs.jpg