基于组稀疏表示和加权全变分的图像压缩感知重构

TP391; 传统的基于组稀疏表示(group sparse representation,GSR)的压缩感知(compressd sensing,CS)重构算法利用信号的稀疏性和非局部相似性来重构图像信号,但没有充分考虑图像的局部平滑特性,影响了算法的重构性能.考虑信号的稀疏性、非局部相似性、平滑性3种先验信息,提出一种基于GSR和加权全变分(weighted total variation,WTV)的图像CS重构算法,并针对传统的WTV采用全局加权会引入错误的纹理以及边缘状伪影的问题,利用一种新的WTV策略,只对图像的高频分量设置权重来保证图像重构质量.此外,针对硬阈值迭代法忽略低频的主分...

Full description

Saved in:
Bibliographic Details
Published in系统工程与电子技术 Vol. 42; no. 10; pp. 2172 - 2180
Main Authors 赵辉, 方禄发, 张天骐, 李志伟, 徐先明
Format Journal Article
LanguageChinese
Published 重庆邮电大学通信与信息工程学院,重庆400065 01.10.2020
重庆邮电大学信号与信息处理重庆市重点实验室,重庆400065
Subjects
Online AccessGet full text
ISSN1001-506X
DOI10.3969/j.issn.1001-506X.2020.10.04

Cover

Abstract TP391; 传统的基于组稀疏表示(group sparse representation,GSR)的压缩感知(compressd sensing,CS)重构算法利用信号的稀疏性和非局部相似性来重构图像信号,但没有充分考虑图像的局部平滑特性,影响了算法的重构性能.考虑信号的稀疏性、非局部相似性、平滑性3种先验信息,提出一种基于GSR和加权全变分(weighted total variation,WTV)的图像CS重构算法,并针对传统的WTV采用全局加权会引入错误的纹理以及边缘状伪影的问题,利用一种新的WTV策略,只对图像的高频分量设置权重来保证图像重构质量.此外,针对硬阈值迭代法忽略低频的主分量系数,采用硬阈值-模平方方法来更好地保护非主分量系数.实验表明,相同采样率下,所提算法的峰值信噪比比非局部正则化全变分和基于GSR的CS算法平均分别提高5.4 dB和0.62 dB,验证了所提算法有效保护图像的细节信息.
AbstractList TP391; 传统的基于组稀疏表示(group sparse representation,GSR)的压缩感知(compressd sensing,CS)重构算法利用信号的稀疏性和非局部相似性来重构图像信号,但没有充分考虑图像的局部平滑特性,影响了算法的重构性能.考虑信号的稀疏性、非局部相似性、平滑性3种先验信息,提出一种基于GSR和加权全变分(weighted total variation,WTV)的图像CS重构算法,并针对传统的WTV采用全局加权会引入错误的纹理以及边缘状伪影的问题,利用一种新的WTV策略,只对图像的高频分量设置权重来保证图像重构质量.此外,针对硬阈值迭代法忽略低频的主分量系数,采用硬阈值-模平方方法来更好地保护非主分量系数.实验表明,相同采样率下,所提算法的峰值信噪比比非局部正则化全变分和基于GSR的CS算法平均分别提高5.4 dB和0.62 dB,验证了所提算法有效保护图像的细节信息.
Author 李志伟
方禄发
赵辉
徐先明
张天骐
AuthorAffiliation 重庆邮电大学通信与信息工程学院,重庆400065;重庆邮电大学信号与信息处理重庆市重点实验室,重庆400065
AuthorAffiliation_xml – name: 重庆邮电大学通信与信息工程学院,重庆400065;重庆邮电大学信号与信息处理重庆市重点实验室,重庆400065
Author_FL FANG Lufa
ZHANG Tianqi
XU Xianming
ZHAO Hui
LI Zhiwei
Author_FL_xml – sequence: 1
  fullname: ZHAO Hui
– sequence: 2
  fullname: FANG Lufa
– sequence: 3
  fullname: ZHANG Tianqi
– sequence: 4
  fullname: LI Zhiwei
– sequence: 5
  fullname: XU Xianming
Author_xml – sequence: 1
  fullname: 赵辉
– sequence: 2
  fullname: 方禄发
– sequence: 3
  fullname: 张天骐
– sequence: 4
  fullname: 李志伟
– sequence: 5
  fullname: 徐先明
BookMark eNo9j8tKw0AYhWdRwVr7FO6ExJnMJGmWWrxBwY2Cu_InmSkNkoKjeFkJjRe8NOBCRNEoKMRXiOLTOBl9CyOKq8N3FufwTaBaPIg5QlMEm9RzvJnI7EsZmwRjYtjYWTctbOEKTcxqqP5fj6OmlH0f24S6NnZZHc2prPgoRvo10fmBvko_H3P9VKjLc3X6UN4N1WGu0mt1cqRvEnX7roapGp3pt5cyyXT2_HV8Ud4nk2hMwIbkzb9soLWF-dX2ktFZWVxuz3YMSbDNjBYRVEBIgwBcYKFPXcKtChg4wGkIgvgU7CDwAAP1GQ-IAy3PEdTzfMulnDbQ9O_uDsQC4l43GmxvxtVjd3erF-yF-5H8sa5kMaPfzRVpiw
ClassificationCodes TP391
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-506X.2020.10.04
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Image compressive sensing reconstruction via group sparse representation and weighted total variation
EndPage 2180
ExternalDocumentID xtgcydzjs202010004
GrantInformation_xml – fundername: 国家自然科学基金
  funderid: (61671095)
GroupedDBID -0Y
2B.
4A8
5XA
5XJ
92E
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
PSX
TCJ
TGP
U1G
U5S
ID FETCH-LOGICAL-s1054-81f3fad3cca7a4db371e2cca4a6ae3daf1b3a5cc9a0a3b4ec16a896f399b273e3
ISSN 1001-506X
IngestDate Thu May 29 04:00:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 10
Keywords 加权全变分
图像重构
组稀疏表示
压缩感知
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1054-81f3fad3cca7a4db371e2cca4a6ae3daf1b3a5cc9a0a3b4ec16a896f399b273e3
PageCount 9
ParticipantIDs wanfang_journals_xtgcydzjs202010004
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationTitle 系统工程与电子技术
PublicationTitle_FL Systems Engineering and Electronics
PublicationYear 2020
Publisher 重庆邮电大学通信与信息工程学院,重庆400065
重庆邮电大学信号与信息处理重庆市重点实验室,重庆400065
Publisher_xml – name: 重庆邮电大学通信与信息工程学院,重庆400065
– name: 重庆邮电大学信号与信息处理重庆市重点实验室,重庆400065
SSID ssib051375074
ssib002263377
ssib001102898
ssib057620160
ssib023168126
ssib023646287
ssj0042237
Score 2.2693791
Snippet TP391; 传统的基于组稀疏表示(group sparse representation,GSR)的压缩感知(compressd...
SourceID wanfang
SourceType Aggregation Database
StartPage 2172
Title 基于组稀疏表示和加权全变分的图像压缩感知重构
URI https://d.wanfangdata.com.cn/periodical/xtgcydzjs202010004
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELb6kBAcEE_xVqXi4y5J7CT20dnNqkKUC63UW-VkkyIOi0S3EvSE1OUhHq3EASEQFCSQyl9YEH-EK2ngXzDjpJuUVqhwibz2eGY-z9qe2R3HhFzueho2ha7XiCOZNngS2w3Yd1KIUiIn9m03dWI84Dx73ZuZ51cX3IWx8e-1rKWVftSMV_c9V_I_VoU6sCuekv0Hy46YQgWUwb7wBAvD80A2pqFLZYcGioYcnyKkoU-DgAqOBSUwjwEK0qOiQ0NBlY2V2GTosbtDRQsLQlEFxB6VbSqYqXENsYt9ZVEAhp5hqIwI6B7QIDRNzIhwUQcRGDVaVElkCJSgJPbqUOXSUFLhU9E2soCY1_1j05EhhAKINDwD33QsEAUGrCjBSii7SKPaVBr9AYgogIACo7xlRA-ESCtQZSGrFg8HKJBGgFcCQ8x2ReIaOJYRxA0uSZWi0trFpW2UAlro7Bs1W4Cg_sMKRNE7KXrFVKgNh2tM6Jkah6o_4IFUv8SpChoLzYBCOmjXalBGNYAF7L3vCNb4SEDiwEzbqwk3rmNt28LEONcyd0KO9jXu1OevtWuXKq5LKj0e8PKs_XZTJj1pdlOU0RzJaOJgNTElkldOxCi1825_Kb7XXb21jFT45xEfJ5OO72MOxaRqz167UXnr6NzWon2IBBirjkU7eKeaXUUHeNWB51TRhGszcHer6AUiZwffl7jjiHHwfM3dSjuKHyLTJaorf8FkTu_1Ut1bqjmac8fI0TJCnFLFdD9OxlZvniBHau8NPUmCbHP4Y7iefxnkW_fzlxs_P2zlH4fZi2fZk_fbb9eyB1vZxqvs8cP89SB78y1b28jWn-ZfP28PNvPNT78ePd9-NzhF5jvhXGumUV6G0liGEIjDCpqyVHcZrLi-5t2I-XbiwAeuPZ2wrk7tiGk3jqW2NItw0fW0kF4KAUgEIUrCTpOJ3u1ecoZM-VKwxOZaJzrlLEojHdvcj2PuxBB_-c5ZMl2OwGK52C0v7jXruQNRnSeHq7l1gUz076wkF8GN70eXyq_Db3oPt6U
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E7%BB%84%E7%A8%80%E7%96%8F%E8%A1%A8%E7%A4%BA%E5%92%8C%E5%8A%A0%E6%9D%83%E5%85%A8%E5%8F%98%E5%88%86%E7%9A%84%E5%9B%BE%E5%83%8F%E5%8E%8B%E7%BC%A9%E6%84%9F%E7%9F%A5%E9%87%8D%E6%9E%84&rft.jtitle=%E7%B3%BB%E7%BB%9F%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF&rft.au=%E8%B5%B5%E8%BE%89&rft.au=%E6%96%B9%E7%A6%84%E5%8F%91&rft.au=%E5%BC%A0%E5%A4%A9%E9%AA%90&rft.au=%E6%9D%8E%E5%BF%97%E4%BC%9F&rft.date=2020-10-01&rft.pub=%E9%87%8D%E5%BA%86%E9%82%AE%E7%94%B5%E5%A4%A7%E5%AD%A6%E9%80%9A%E4%BF%A1%E4%B8%8E%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E9%87%8D%E5%BA%86400065&rft.issn=1001-506X&rft.volume=42&rft.issue=10&rft.spage=2172&rft.epage=2180&rft_id=info:doi/10.3969%2Fj.issn.1001-506X.2020.10.04&rft.externalDocID=xtgcydzjs202010004
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxtgcydzjs%2Fxtgcydzjs.jpg