基于全流程并行遗传算法的贝叶斯网络结构学习

TP181; 为解决海量数据情况下学习贝叶斯网络(Bayesian network,BN)结构的算法性能急剧降低问题,基于Spark框架设计了一种全流程并行遗传算法用于BN结构学习(简称为SparkGA-BN).SparkGA-BN包含互信息计算并行化、遗传算子并行化和适应度评分并行化3个部分.互信息并行计算可以高效减少搜索空间;在演化前增加对种群信息与选择信息的广播来对全种群执行选择操作.选择与交叉算子共用选择信息以并行执行,从而高效演化并减少数据落盘时间.对约束和评分两阶段产生的中间数据作记忆化存储,提升数据复用率和全局执行效率.实验结果表明,所提算法在执行效率和学习准确率方面均优于对比算...

Full description

Saved in:
Bibliographic Details
Published in系统工程与电子技术 Vol. 46; no. 5; pp. 1703 - 1711
Main Authors 蔡一鸣, 马力, 陆恒杨, 方伟
Format Journal Article
LanguageChinese
Published 江南大学人工智能与计算机学院,江苏无锡 214122 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract TP181; 为解决海量数据情况下学习贝叶斯网络(Bayesian network,BN)结构的算法性能急剧降低问题,基于Spark框架设计了一种全流程并行遗传算法用于BN结构学习(简称为SparkGA-BN).SparkGA-BN包含互信息计算并行化、遗传算子并行化和适应度评分并行化3个部分.互信息并行计算可以高效减少搜索空间;在演化前增加对种群信息与选择信息的广播来对全种群执行选择操作.选择与交叉算子共用选择信息以并行执行,从而高效演化并减少数据落盘时间.对约束和评分两阶段产生的中间数据作记忆化存储,提升数据复用率和全局执行效率.实验结果表明,所提算法在执行效率和学习准确率方面均优于对比算法.
AbstractList TP181; 为解决海量数据情况下学习贝叶斯网络(Bayesian network,BN)结构的算法性能急剧降低问题,基于Spark框架设计了一种全流程并行遗传算法用于BN结构学习(简称为SparkGA-BN).SparkGA-BN包含互信息计算并行化、遗传算子并行化和适应度评分并行化3个部分.互信息并行计算可以高效减少搜索空间;在演化前增加对种群信息与选择信息的广播来对全种群执行选择操作.选择与交叉算子共用选择信息以并行执行,从而高效演化并减少数据落盘时间.对约束和评分两阶段产生的中间数据作记忆化存储,提升数据复用率和全局执行效率.实验结果表明,所提算法在执行效率和学习准确率方面均优于对比算法.
Abstract_FL To solve the problem of algorithm performance degradation in Bayesian network(BN)structure learning in case of massive data,a full process parallel genetic algorithm(GA)for BN structure learning is proposed based on the Spark framework(SparkGA-BN).SparkGA-BN includes three parts:parallel calculation of mutual information,parallelization of genetic operators,and parallelization of fitness evaluation.Parallel computation of mutual information is employed to reduce the search space.Broadcasting is used to perform selection operation on the entire population by propagating population information and selection information before evolution.Selection and crossover operators share selection information to evolve efficiently and reduce disk write time.Intermediate data generated during the constraint and scoring stages are stored in memory to improve data reuse and overall execution efficiency.Experimental results show that the proposed algorithm outperforms the comparison algorithms in terms of execution efficiency and learning accuracy.
Author 蔡一鸣
方伟
马力
陆恒杨
AuthorAffiliation 江南大学人工智能与计算机学院,江苏无锡 214122
AuthorAffiliation_xml – name: 江南大学人工智能与计算机学院,江苏无锡 214122
Author_FL MA Li
CAI Yiming
LU Hengyang
FANG Wie
Author_FL_xml – sequence: 1
  fullname: CAI Yiming
– sequence: 2
  fullname: MA Li
– sequence: 3
  fullname: LU Hengyang
– sequence: 4
  fullname: FANG Wie
Author_xml – sequence: 1
  fullname: 蔡一鸣
– sequence: 2
  fullname: 马力
– sequence: 3
  fullname: 陆恒杨
– sequence: 4
  fullname: 方伟
BookMark eNo9j7tKA0EYRqeIYIx5Cythx39mdvZSiQRvELBRsAuzOzMhQTbgKF66QKwURUQD4iU2kkYt1EASfZu9xLcwolgd-IrzcaZQLmpECqEZAphQBnyujmvGRJgAEIuDs4kpUBsDx5TlUP5_nkRFY2oBcMJcDq6dR_PJ_SAenCZH3fS9mXWPk35v9HDy1WzHH53suZ2-XmbXrdHbbXLWS69ess_zbHiTDS_Su1by9Bj3O9NoQosto4p_LKCNpcX10opVXlteLS2ULUOAMysknuRSKd8NFWch2FprjymmbOlL6QilPSHtABzHJ5yPi6hHpe-4gacAhBasgGZ_vXsi0iKqVuqN3e1o_FjZ36mGB_Kwbn6SgQNl7BvLlWhc
ClassificationCodes TP181
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12305/j.issn.1001-506X.2024.05.23
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Full process parallel genetic algorithm for Bayesian network structure learning
EndPage 1711
ExternalDocumentID xtgcydzjs202405023
GrantInformation_xml – fundername: (国家自然科学基金); (国家自然科学基金); (国家自然科学基金); (国家自然科学基金)
  funderid: (国家自然科学基金); (国家自然科学基金); (国家自然科学基金); (国家自然科学基金)
GroupedDBID -0Y
2B.
4A8
5XA
5XJ
92E
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
PSX
TCJ
TGP
U1G
U5S
ID FETCH-LOGICAL-s1053-c18d5dee97ce53c04fff83e3e4d9dd6aef8ad4b0669155305282d967b8e00afa3
ISSN 1001-506X
IngestDate Thu May 29 04:00:31 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords Bayesian network(BN)
genetic algorithm(GA)
遗传算法
贝叶斯网络
parallel structure learning
并行结构学习
Spark
结构学习
structure learning
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1053-c18d5dee97ce53c04fff83e3e4d9dd6aef8ad4b0669155305282d967b8e00afa3
PageCount 9
ParticipantIDs wanfang_journals_xtgcydzjs202405023
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationTitle 系统工程与电子技术
PublicationTitle_FL Systems Engineering and Electronics
PublicationYear 2024
Publisher 江南大学人工智能与计算机学院,江苏无锡 214122
Publisher_xml – name: 江南大学人工智能与计算机学院,江苏无锡 214122
SSID ssib051375074
ssib002263377
ssib001102898
ssib057620160
ssib023168126
ssib023646287
ssj0042237
Score 2.40518
Snippet TP181; 为解决海量数据情况下学习贝叶斯网络(Bayesian...
SourceID wanfang
SourceType Aggregation Database
StartPage 1703
Title 基于全流程并行遗传算法的贝叶斯网络结构学习
URI https://d.wanfangdata.com.cn/periodical/xtgcydzjs202405023
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEG7yANGD-MQ3AdMnmTgz3TPTfZKZ3VmCGC8mkFuYZ9TDCmYDmlsgnhRFRAPiI14kF_WgBpLor_AvZHfjv7CqdnZnJCJRWJrenqqu-qpmpquGfjA2nggrsyw3MpQTJYZUeWREcYpFlsQeZD4x7bM9dd2dnJFXZ53ZoeEflVlLi614Iln647qS__EqtIFfcZXsP3h20Ck0QB38CyV4GMp9-ZiHDtcNHvg8lFiqEFuUw33FQ5cHULd46OFfFeClQPPA5aHivsVVjYcaCbRH7DXum0QcUguwC64dbNHQs0SuQHJdJxEN6sfl2uV-A2mCOtckKwi4rvUrgmhCYget6tx3SZYGWdWwmOgFshSMDdIWlHEq-gOjIoygkkR0vT61iVKUj5M2UBwAGUxXRq2BFuAW3CaChoovShLQBn41AuZzHVSvaDARIUVD2dQ_oFAlCdkAAPVMqBvVzyi2LCct0o1PZrUKeKpOhgYMoKD3u4F8curABC7qgS2AQKCtS1sodJhv_eY5MEGPveiQYPg2PE4VBcim4Eik98j3umeqS7YlLbvyORg30DIck86CHIxnxSfdW9UZAzQ4WZ4pKoGO5fWGuT2DKGSlDo2iKGNiIGMCzYbb3NqiDB4GUzrvteaT--nS7QWkMh0IBYfZqA25mz3CRv361LUbZZSOQW0ly4cMQIhyObSNZ6lZZVaARxy4dplFOJaAMLfMWiBjtnGfxH4AJiHipTOV-oofYON9WJf_AoqW7TXzqDlfiTCnj7DDRWo45vee86NsaOnmMXaosmHocXal_XZrZ-tx-8F65-tyd_1he3Nj992jn8urO9_Wuh9XO5-fd1-u7H553X6y0Xnxqfv9aXf7VXf7WefNSvvD-53NtRNsphFO1yaN4ggUYwESH2EklkqdNMu0l2SOSEyZ57kSmchkqtPUjbJcRamMIW_QdACYYys71a4Xq8w0ozwSJ9lI804zO8XGYPjOXWlHbhTFUuZp5HmecPMEdxA1s1SdZhcL-HPFK25hbq9Tz-yL6iw7WD5j59hI6-5idh6C91Z8obgZfgFjgbUP
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%85%A8%E6%B5%81%E7%A8%8B%E5%B9%B6%E8%A1%8C%E9%81%97%E4%BC%A0%E7%AE%97%E6%B3%95%E7%9A%84%E8%B4%9D%E5%8F%B6%E6%96%AF%E7%BD%91%E7%BB%9C%E7%BB%93%E6%9E%84%E5%AD%A6%E4%B9%A0&rft.jtitle=%E7%B3%BB%E7%BB%9F%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF&rft.au=%E8%94%A1%E4%B8%80%E9%B8%A3&rft.au=%E9%A9%AC%E5%8A%9B&rft.au=%E9%99%86%E6%81%92%E6%9D%A8&rft.au=%E6%96%B9%E4%BC%9F&rft.date=2024-05-01&rft.pub=%E6%B1%9F%E5%8D%97%E5%A4%A7%E5%AD%A6%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E4%B8%8E%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AD%A6%E9%99%A2%2C%E6%B1%9F%E8%8B%8F%E6%97%A0%E9%94%A1+214122&rft.issn=1001-506X&rft.volume=46&rft.issue=5&rft.spage=1703&rft.epage=1711&rft_id=info:doi/10.12305%2Fj.issn.1001-506X.2024.05.23&rft.externalDocID=xtgcydzjs202405023
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxtgcydzjs%2Fxtgcydzjs.jpg