基于XGBoost增量实现业务流程执行结果的预测性监控方法

TP311; 随着工业制造业务流程智能化提升,以预测执行结果为目标的监控技术成为必需.该技术基于历史执行构建预测模型,从而对正在执行的流程进行结果预测.但现有研究假定流程执行行为一直保持不变,实际上流程在运行中常发生变化(即流程执行发生漂移),因此预测模型也需要适应这种漂移.针对这种情况,受到在线学习思想的启发,提出了基于XGBoost增量实现以流程执行结果为目标的预测流程监控技术,并分别在真实数据集和合成数据集上进行了大量的实验.实验结果表明,基于XGBoost的增量学习技术能够很好地为工业制造真实场景中的预测性流程监控提供一种有效的解决方案....

Full description

Saved in:
Bibliographic Details
Published in计算机集成制造系统 Vol. 30; no. 8; pp. 2756 - 2775
Main Authors 王娇娇, 马小雨, 刘畅, 俞定国, 俞东进, 张银珠
Format Journal Article
LanguageChinese
Published 浙江传媒学院智能媒体技术研究院,浙江 杭州 310018 01.08.2024
浙江省影视媒体技术研究重点实验室,浙江 杭州 310018%杭州电子科技大学计算机学院,浙江 杭州 310018%上海电机学院 信息化中心,上海 201306
Subjects
Online AccessGet full text
ISSN1006-5911
DOI10.13196/j.cims.2023.BPM07

Cover

Abstract TP311; 随着工业制造业务流程智能化提升,以预测执行结果为目标的监控技术成为必需.该技术基于历史执行构建预测模型,从而对正在执行的流程进行结果预测.但现有研究假定流程执行行为一直保持不变,实际上流程在运行中常发生变化(即流程执行发生漂移),因此预测模型也需要适应这种漂移.针对这种情况,受到在线学习思想的启发,提出了基于XGBoost增量实现以流程执行结果为目标的预测流程监控技术,并分别在真实数据集和合成数据集上进行了大量的实验.实验结果表明,基于XGBoost的增量学习技术能够很好地为工业制造真实场景中的预测性流程监控提供一种有效的解决方案.
AbstractList TP311; 随着工业制造业务流程智能化提升,以预测执行结果为目标的监控技术成为必需.该技术基于历史执行构建预测模型,从而对正在执行的流程进行结果预测.但现有研究假定流程执行行为一直保持不变,实际上流程在运行中常发生变化(即流程执行发生漂移),因此预测模型也需要适应这种漂移.针对这种情况,受到在线学习思想的启发,提出了基于XGBoost增量实现以流程执行结果为目标的预测流程监控技术,并分别在真实数据集和合成数据集上进行了大量的实验.实验结果表明,基于XGBoost的增量学习技术能够很好地为工业制造真实场景中的预测性流程监控提供一种有效的解决方案.
Abstract_FL With the improvement of industrial manufacturing business processes,monitoring technology aimed at predicting the results of execution is necessary.The technique builds prediction models based on historical execution to predict the results of the processes being executed.However,existing studies assume that the process execution behavior remains the same,but the process often changes during the operation(the process execution drift)in prac-tical application,so the prediction model needs to adapt to this drift.In response to this situation,inspired by the i-dea of online learning,a predictive process monitoring technology was proposed based on XGBoost incremental im-plementation targeting process execution outcomes,and a large number of experiments on real data sets and syn-thetic data sets were conducted respectively.The experimental results showed that the incremental learning technolo-gy based on XGBoost could well provide an effective solution for predictive process monitoring in real scenarios of in-dustrial manufacturing.
Author 俞东进
马小雨
张银珠
俞定国
王娇娇
刘畅
AuthorAffiliation 浙江传媒学院智能媒体技术研究院,浙江 杭州 310018;浙江省影视媒体技术研究重点实验室,浙江 杭州 310018%杭州电子科技大学计算机学院,浙江 杭州 310018%上海电机学院 信息化中心,上海 201306
AuthorAffiliation_xml – name: 浙江传媒学院智能媒体技术研究院,浙江 杭州 310018;浙江省影视媒体技术研究重点实验室,浙江 杭州 310018%杭州电子科技大学计算机学院,浙江 杭州 310018%上海电机学院 信息化中心,上海 201306
Author_FL WANG Jiaojiao
YU Dongjin
LIU Chang
YU Dingguo
ZHANG Yinzhu
MA Xiaoyu
Author_FL_xml – sequence: 1
  fullname: WANG Jiaojiao
– sequence: 2
  fullname: MA Xiaoyu
– sequence: 3
  fullname: LIU Chang
– sequence: 4
  fullname: YU Dingguo
– sequence: 5
  fullname: YU Dongjin
– sequence: 6
  fullname: ZHANG Yinzhu
Author_xml – sequence: 1
  fullname: 王娇娇
– sequence: 2
  fullname: 马小雨
– sequence: 3
  fullname: 刘畅
– sequence: 4
  fullname: 俞定国
– sequence: 5
  fullname: 俞东进
– sequence: 6
  fullname: 张银珠
BookMark eNotj8tKw0AARWdRwVr7A36CkDiPzCRZ2qK1UNGFgrsyeYw0aAJORelKoVC0UhHRRZVIu4krEaSg9Xeaif0LA7q63M255y6BQhiFPgArCOqIIJutBbrbOpY6hpjold1taBZAEUHINGojtAjKUracvFJGTEqLoJ6-TGfTwUGtEkWynY7jee82fYuzwfvsc5hej9TkMnvtq6vkZ3STfd-r-Dkbdufjrpr01UWSPd2pQaIev9THwzJYEPxI-uX_LIH9zY296pbW2KnVq-sNTSJIiea4nDCaG3jQNl3m2NiDghmUY0cITCHB1DBMwW3HZhZ3sIs8X1jUooj5FHKXlMDqH_eMh4KHh80gOj0J88VmIIPA7XTO2_l5A1oQEfILYhVpmw
ClassificationCodes TP311
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.13196/j.cims.2023.BPM07
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Incremental outcome-oriented predictive process monitoring based on XGBoost
EndPage 2775
ExternalDocumentID jsjjczzxt202408013
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CDYEO
PSX
TCJ
ID FETCH-LOGICAL-s1053-bca365006d097c6b92d0f645a2bff250325447fa9b968ab2c1def858516e50ac3
ISSN 1006-5911
IngestDate Thu May 29 04:00:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords 概念漂移
预测性业务流程监控
concept drift
incremental learning
XGBoost
predictive process monitoring
extreme gradient boosting
增量学习
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1053-bca365006d097c6b92d0f645a2bff250325447fa9b968ab2c1def858516e50ac3
PageCount 20
ParticipantIDs wanfang_journals_jsjjczzxt202408013
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationTitle 计算机集成制造系统
PublicationTitle_FL Computer Integrated Manufacturing Systems
PublicationYear 2024
Publisher 浙江传媒学院智能媒体技术研究院,浙江 杭州 310018
浙江省影视媒体技术研究重点实验室,浙江 杭州 310018%杭州电子科技大学计算机学院,浙江 杭州 310018%上海电机学院 信息化中心,上海 201306
Publisher_xml – name: 浙江省影视媒体技术研究重点实验室,浙江 杭州 310018%杭州电子科技大学计算机学院,浙江 杭州 310018%上海电机学院 信息化中心,上海 201306
– name: 浙江传媒学院智能媒体技术研究院,浙江 杭州 310018
SSID ssib006563755
ssib023646381
ssib001102950
ssib051375755
ssib023167363
ssib036438063
ssib000459500
ssib002258428
Score 2.4222476
Snippet TP311;...
SourceID wanfang
SourceType Aggregation Database
StartPage 2756
Title 基于XGBoost增量实现业务流程执行结果的预测性监控方法
URI https://d.wanfangdata.com.cn/periodical/jsjjczzxt202408013
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANNT24kUUFb8p6JxKanaSSWaOyW7WKlYEW-itJLMbdcEt2C3InhQKopWKiB6qVNpLPYkgBa1_p5u14I_wvZdxN9oeqssSJjPv--3kzcvOh2Vd0cJJVeo17AbPuO15OrMTzZu21hCMgwAG2DSrcvqWPzXr3ZgTcyNHfpZmLS110kndPXBdyf94FerAr7hK9h88OyAKFVAG_8IVPAzXQ_mYxYKpOotCFnt4lfHctWgBl3FAQ8iZilmsGKT7sk41MdXAbcwih3AkUyE2yZCFFRb7LIJyBWFCyWSENVKxMGCxRABZxaYoYsrFJqCmqAaISA95AVMsFHQKdIfQAQawiAVwxxpABzBFwC4rzsD8PUwmdjGJFJDYBXyVVFVISvpECuR3SH7JIp-UBXYOCeminEbawfRloz2KJkjFYFAYgoAa8K1iC5gJbUcsQzkEIY5Kkl5QFsMWMGqdzFzYm6wLyFGt_H6Fe4PZfUWPMCZThTkq6FWkVCVlgFLIFKdCjYWkpyJbo1EUGQU0AIVrJWAPbws_gXfBLoUFwzrZ1GHKo4IyhisI8up-SSYIs4a80SKgcTyBf9j8EdHwlZFQJqKZkGf-Ciu6tizHr0D4pbEQ9FZxYJzFBzcFWn3_AW56z93J6PZ0cX7xX_uXtxZbLd3tPupw2k7PwSOmx4AwTqoYC2vTN--U0wslSttFwtCUK1Fepw3D5VK6DLmIGwzXVXPc1aG0nRyejQDhZRC_4NaVzrBdVAA7oIORB1Yy6-pQv6v7tKOFfe0sad8tjUFnjlvHTPI4HhZPghPWSPfeSet678PO7s6q6fm9zfW9py97n9b7q593v671nm_k20_6H1fyZ1s_Nl70v7_O19_315b3Npfz7ZX88Vb_3at8dSt_-y3_8uaUNVuPZ6pTtjkgxV6EtMi1U524kGE5fsNRgfZTxRtO5nsi4WmWQW7j4v6DQZaoVPkySbmuNJoZTQTwm8JJtHvaGm0vtJtnrHEg0mykopJWPPgkjpKBhtwmSTgkbJl2z1qXjerz5gG4OL_fs-cOBXXeOjrsaBes0c7DpeZFGNp30kvmF_ELKoG7oA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EXGBoost%E5%A2%9E%E9%87%8F%E5%AE%9E%E7%8E%B0%E4%B8%9A%E5%8A%A1%E6%B5%81%E7%A8%8B%E6%89%A7%E8%A1%8C%E7%BB%93%E6%9E%9C%E7%9A%84%E9%A2%84%E6%B5%8B%E6%80%A7%E7%9B%91%E6%8E%A7%E6%96%B9%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E9%9B%86%E6%88%90%E5%88%B6%E9%80%A0%E7%B3%BB%E7%BB%9F&rft.au=%E7%8E%8B%E5%A8%87%E5%A8%87&rft.au=%E9%A9%AC%E5%B0%8F%E9%9B%A8&rft.au=%E5%88%98%E7%95%85&rft.au=%E4%BF%9E%E5%AE%9A%E5%9B%BD&rft.date=2024-08-01&rft.pub=%E6%B5%99%E6%B1%9F%E4%BC%A0%E5%AA%92%E5%AD%A6%E9%99%A2%E6%99%BA%E8%83%BD%E5%AA%92%E4%BD%93%E6%8A%80%E6%9C%AF%E7%A0%94%E7%A9%B6%E9%99%A2%2C%E6%B5%99%E6%B1%9F+%E6%9D%AD%E5%B7%9E+310018&rft.issn=1006-5911&rft.volume=30&rft.issue=8&rft.spage=2756&rft.epage=2775&rft_id=info:doi/10.13196%2Fj.cims.2023.BPM07&rft.externalDocID=jsjjczzxt202408013
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjjczzxt%2Fjsjjczzxt.jpg