基于XGBoost增量实现业务流程执行结果的预测性监控方法
TP311; 随着工业制造业务流程智能化提升,以预测执行结果为目标的监控技术成为必需.该技术基于历史执行构建预测模型,从而对正在执行的流程进行结果预测.但现有研究假定流程执行行为一直保持不变,实际上流程在运行中常发生变化(即流程执行发生漂移),因此预测模型也需要适应这种漂移.针对这种情况,受到在线学习思想的启发,提出了基于XGBoost增量实现以流程执行结果为目标的预测流程监控技术,并分别在真实数据集和合成数据集上进行了大量的实验.实验结果表明,基于XGBoost的增量学习技术能够很好地为工业制造真实场景中的预测性流程监控提供一种有效的解决方案....
Saved in:
Published in | 计算机集成制造系统 Vol. 30; no. 8; pp. 2756 - 2775 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | Chinese |
Published |
浙江传媒学院智能媒体技术研究院,浙江 杭州 310018
01.08.2024
浙江省影视媒体技术研究重点实验室,浙江 杭州 310018%杭州电子科技大学计算机学院,浙江 杭州 310018%上海电机学院 信息化中心,上海 201306 |
Subjects | |
Online Access | Get full text |
ISSN | 1006-5911 |
DOI | 10.13196/j.cims.2023.BPM07 |
Cover
Abstract | TP311; 随着工业制造业务流程智能化提升,以预测执行结果为目标的监控技术成为必需.该技术基于历史执行构建预测模型,从而对正在执行的流程进行结果预测.但现有研究假定流程执行行为一直保持不变,实际上流程在运行中常发生变化(即流程执行发生漂移),因此预测模型也需要适应这种漂移.针对这种情况,受到在线学习思想的启发,提出了基于XGBoost增量实现以流程执行结果为目标的预测流程监控技术,并分别在真实数据集和合成数据集上进行了大量的实验.实验结果表明,基于XGBoost的增量学习技术能够很好地为工业制造真实场景中的预测性流程监控提供一种有效的解决方案. |
---|---|
AbstractList | TP311; 随着工业制造业务流程智能化提升,以预测执行结果为目标的监控技术成为必需.该技术基于历史执行构建预测模型,从而对正在执行的流程进行结果预测.但现有研究假定流程执行行为一直保持不变,实际上流程在运行中常发生变化(即流程执行发生漂移),因此预测模型也需要适应这种漂移.针对这种情况,受到在线学习思想的启发,提出了基于XGBoost增量实现以流程执行结果为目标的预测流程监控技术,并分别在真实数据集和合成数据集上进行了大量的实验.实验结果表明,基于XGBoost的增量学习技术能够很好地为工业制造真实场景中的预测性流程监控提供一种有效的解决方案. |
Abstract_FL | With the improvement of industrial manufacturing business processes,monitoring technology aimed at predicting the results of execution is necessary.The technique builds prediction models based on historical execution to predict the results of the processes being executed.However,existing studies assume that the process execution behavior remains the same,but the process often changes during the operation(the process execution drift)in prac-tical application,so the prediction model needs to adapt to this drift.In response to this situation,inspired by the i-dea of online learning,a predictive process monitoring technology was proposed based on XGBoost incremental im-plementation targeting process execution outcomes,and a large number of experiments on real data sets and syn-thetic data sets were conducted respectively.The experimental results showed that the incremental learning technolo-gy based on XGBoost could well provide an effective solution for predictive process monitoring in real scenarios of in-dustrial manufacturing. |
Author | 俞东进 马小雨 张银珠 俞定国 王娇娇 刘畅 |
AuthorAffiliation | 浙江传媒学院智能媒体技术研究院,浙江 杭州 310018;浙江省影视媒体技术研究重点实验室,浙江 杭州 310018%杭州电子科技大学计算机学院,浙江 杭州 310018%上海电机学院 信息化中心,上海 201306 |
AuthorAffiliation_xml | – name: 浙江传媒学院智能媒体技术研究院,浙江 杭州 310018;浙江省影视媒体技术研究重点实验室,浙江 杭州 310018%杭州电子科技大学计算机学院,浙江 杭州 310018%上海电机学院 信息化中心,上海 201306 |
Author_FL | WANG Jiaojiao YU Dongjin LIU Chang YU Dingguo ZHANG Yinzhu MA Xiaoyu |
Author_FL_xml | – sequence: 1 fullname: WANG Jiaojiao – sequence: 2 fullname: MA Xiaoyu – sequence: 3 fullname: LIU Chang – sequence: 4 fullname: YU Dingguo – sequence: 5 fullname: YU Dongjin – sequence: 6 fullname: ZHANG Yinzhu |
Author_xml | – sequence: 1 fullname: 王娇娇 – sequence: 2 fullname: 马小雨 – sequence: 3 fullname: 刘畅 – sequence: 4 fullname: 俞定国 – sequence: 5 fullname: 俞东进 – sequence: 6 fullname: 张银珠 |
BookMark | eNotj8tKw0AARWdRwVr7A36CkDiPzCRZ2qK1UNGFgrsyeYw0aAJORelKoVC0UhHRRZVIu4krEaSg9Xeaif0LA7q63M255y6BQhiFPgArCOqIIJutBbrbOpY6hpjold1taBZAEUHINGojtAjKUracvFJGTEqLoJ6-TGfTwUGtEkWynY7jee82fYuzwfvsc5hej9TkMnvtq6vkZ3STfd-r-Dkbdufjrpr01UWSPd2pQaIev9THwzJYEPxI-uX_LIH9zY296pbW2KnVq-sNTSJIiea4nDCaG3jQNl3m2NiDghmUY0cITCHB1DBMwW3HZhZ3sIs8X1jUooj5FHKXlMDqH_eMh4KHh80gOj0J88VmIIPA7XTO2_l5A1oQEfILYhVpmw |
ClassificationCodes | TP311 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.13196/j.cims.2023.BPM07 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | Incremental outcome-oriented predictive process monitoring based on XGBoost |
EndPage | 2775 |
ExternalDocumentID | jsjjczzxt202408013 |
GroupedDBID | 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS CDYEO PSX TCJ |
ID | FETCH-LOGICAL-s1053-bca365006d097c6b92d0f645a2bff250325447fa9b968ab2c1def858516e50ac3 |
ISSN | 1006-5911 |
IngestDate | Thu May 29 04:00:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | 概念漂移 预测性业务流程监控 concept drift incremental learning XGBoost predictive process monitoring extreme gradient boosting 增量学习 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1053-bca365006d097c6b92d0f645a2bff250325447fa9b968ab2c1def858516e50ac3 |
PageCount | 20 |
ParticipantIDs | wanfang_journals_jsjjczzxt202408013 |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 计算机集成制造系统 |
PublicationTitle_FL | Computer Integrated Manufacturing Systems |
PublicationYear | 2024 |
Publisher | 浙江传媒学院智能媒体技术研究院,浙江 杭州 310018 浙江省影视媒体技术研究重点实验室,浙江 杭州 310018%杭州电子科技大学计算机学院,浙江 杭州 310018%上海电机学院 信息化中心,上海 201306 |
Publisher_xml | – name: 浙江省影视媒体技术研究重点实验室,浙江 杭州 310018%杭州电子科技大学计算机学院,浙江 杭州 310018%上海电机学院 信息化中心,上海 201306 – name: 浙江传媒学院智能媒体技术研究院,浙江 杭州 310018 |
SSID | ssib006563755 ssib023646381 ssib001102950 ssib051375755 ssib023167363 ssib036438063 ssib000459500 ssib002258428 |
Score | 2.4222476 |
Snippet | TP311;... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 2756 |
Title | 基于XGBoost增量实现业务流程执行结果的预测性监控方法 |
URI | https://d.wanfangdata.com.cn/periodical/jsjjczzxt202408013 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANNT24kUUFb8p6JxKanaSSWaOyW7WKlYEW-itJLMbdcEt2C3InhQKopWKiB6qVNpLPYkgBa1_p5u14I_wvZdxN9oeqssSJjPv--3kzcvOh2Vd0cJJVeo17AbPuO15OrMTzZu21hCMgwAG2DSrcvqWPzXr3ZgTcyNHfpZmLS110kndPXBdyf94FerAr7hK9h88OyAKFVAG_8IVPAzXQ_mYxYKpOotCFnt4lfHctWgBl3FAQ8iZilmsGKT7sk41MdXAbcwih3AkUyE2yZCFFRb7LIJyBWFCyWSENVKxMGCxRABZxaYoYsrFJqCmqAaISA95AVMsFHQKdIfQAQawiAVwxxpABzBFwC4rzsD8PUwmdjGJFJDYBXyVVFVISvpECuR3SH7JIp-UBXYOCeminEbawfRloz2KJkjFYFAYgoAa8K1iC5gJbUcsQzkEIY5Kkl5QFsMWMGqdzFzYm6wLyFGt_H6Fe4PZfUWPMCZThTkq6FWkVCVlgFLIFKdCjYWkpyJbo1EUGQU0AIVrJWAPbws_gXfBLoUFwzrZ1GHKo4IyhisI8up-SSYIs4a80SKgcTyBf9j8EdHwlZFQJqKZkGf-Ciu6tizHr0D4pbEQ9FZxYJzFBzcFWn3_AW56z93J6PZ0cX7xX_uXtxZbLd3tPupw2k7PwSOmx4AwTqoYC2vTN--U0wslSttFwtCUK1Fepw3D5VK6DLmIGwzXVXPc1aG0nRyejQDhZRC_4NaVzrBdVAA7oIORB1Yy6-pQv6v7tKOFfe0sad8tjUFnjlvHTPI4HhZPghPWSPfeSet678PO7s6q6fm9zfW9py97n9b7q593v671nm_k20_6H1fyZ1s_Nl70v7_O19_315b3Npfz7ZX88Vb_3at8dSt_-y3_8uaUNVuPZ6pTtjkgxV6EtMi1U524kGE5fsNRgfZTxRtO5nsi4WmWQW7j4v6DQZaoVPkySbmuNJoZTQTwm8JJtHvaGm0vtJtnrHEg0mykopJWPPgkjpKBhtwmSTgkbJl2z1qXjerz5gG4OL_fs-cOBXXeOjrsaBes0c7DpeZFGNp30kvmF_ELKoG7oA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EXGBoost%E5%A2%9E%E9%87%8F%E5%AE%9E%E7%8E%B0%E4%B8%9A%E5%8A%A1%E6%B5%81%E7%A8%8B%E6%89%A7%E8%A1%8C%E7%BB%93%E6%9E%9C%E7%9A%84%E9%A2%84%E6%B5%8B%E6%80%A7%E7%9B%91%E6%8E%A7%E6%96%B9%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E9%9B%86%E6%88%90%E5%88%B6%E9%80%A0%E7%B3%BB%E7%BB%9F&rft.au=%E7%8E%8B%E5%A8%87%E5%A8%87&rft.au=%E9%A9%AC%E5%B0%8F%E9%9B%A8&rft.au=%E5%88%98%E7%95%85&rft.au=%E4%BF%9E%E5%AE%9A%E5%9B%BD&rft.date=2024-08-01&rft.pub=%E6%B5%99%E6%B1%9F%E4%BC%A0%E5%AA%92%E5%AD%A6%E9%99%A2%E6%99%BA%E8%83%BD%E5%AA%92%E4%BD%93%E6%8A%80%E6%9C%AF%E7%A0%94%E7%A9%B6%E9%99%A2%2C%E6%B5%99%E6%B1%9F+%E6%9D%AD%E5%B7%9E+310018&rft.issn=1006-5911&rft.volume=30&rft.issue=8&rft.spage=2756&rft.epage=2775&rft_id=info:doi/10.13196%2Fj.cims.2023.BPM07&rft.externalDocID=jsjjczzxt202408013 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjjczzxt%2Fjsjjczzxt.jpg |