基于迁移学习和注意力机制的伪装图像分割
TN957.52; 不同于常规目标,伪装目标特征模糊、尺度信息复杂多变、检测和分割难度更高.在现有伪装数据集基础上,提出了一种结合迁移学习和有效通道注意力的UNet网络伪装图像分割方法.首先,针对伪装目标特征模糊难以有效提取的问题,在UNet的下采样和上采样过程中,引入一种有效通道注意力机制,在不增加网络参数的同时,提高有效区域的特征权重;并将在ImageNet预训练好的视觉几何组(visual geometry group,VGG)系列网络迁移到UNet网络中,实现特征迁移和参数共享,提高模型的泛化能力,降低训练效果对数据集的依赖,减少训练成本;在训练过程中引入FocalLoss函数,增加难...
Saved in:
Published in | 系统工程与电子技术 Vol. 44; no. 2; pp. 376 - 384 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Chinese |
Published |
国防科技大学电子对抗学院,安徽合肥230037
01.02.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1001-506X |
DOI | 10.12305/j.issn.1001-506X.2022.02.03 |
Cover
Loading…
Abstract | TN957.52; 不同于常规目标,伪装目标特征模糊、尺度信息复杂多变、检测和分割难度更高.在现有伪装数据集基础上,提出了一种结合迁移学习和有效通道注意力的UNet网络伪装图像分割方法.首先,针对伪装目标特征模糊难以有效提取的问题,在UNet的下采样和上采样过程中,引入一种有效通道注意力机制,在不增加网络参数的同时,提高有效区域的特征权重;并将在ImageNet预训练好的视觉几何组(visual geometry group,VGG)系列网络迁移到UNet网络中,实现特征迁移和参数共享,提高模型的泛化能力,降低训练效果对数据集的依赖,减少训练成本;在训练过程中引入FocalLoss函数,增加难挖掘样本权重,提高对困难样本关注度;最后通过解码网络得到分割结果.在CHAMELEON、CAMO和COD10K数据集上进行了测试,相比原始算法,性能指标有显著提升. |
---|---|
AbstractList | TN957.52; 不同于常规目标,伪装目标特征模糊、尺度信息复杂多变、检测和分割难度更高.在现有伪装数据集基础上,提出了一种结合迁移学习和有效通道注意力的UNet网络伪装图像分割方法.首先,针对伪装目标特征模糊难以有效提取的问题,在UNet的下采样和上采样过程中,引入一种有效通道注意力机制,在不增加网络参数的同时,提高有效区域的特征权重;并将在ImageNet预训练好的视觉几何组(visual geometry group,VGG)系列网络迁移到UNet网络中,实现特征迁移和参数共享,提高模型的泛化能力,降低训练效果对数据集的依赖,减少训练成本;在训练过程中引入FocalLoss函数,增加难挖掘样本权重,提高对困难样本关注度;最后通过解码网络得到分割结果.在CHAMELEON、CAMO和COD10K数据集上进行了测试,相比原始算法,性能指标有显著提升. |
Author | 朱敬成 吴涛 王伦文 |
AuthorAffiliation | 国防科技大学电子对抗学院,安徽合肥230037 |
AuthorAffiliation_xml | – name: 国防科技大学电子对抗学院,安徽合肥230037 |
Author_FL | ZHU Jingcheng WU Tao WANG Lunwen |
Author_FL_xml | – sequence: 1 fullname: WU Tao – sequence: 2 fullname: WANG Lunwen – sequence: 3 fullname: ZHU Jingcheng |
Author_xml | – sequence: 1 fullname: 吴涛 – sequence: 2 fullname: 王伦文 – sequence: 3 fullname: 朱敬成 |
BookMark | eNo9j8tKAzEYhbOoYK19C1fCjH-SSTNZSvEGBTcK7komk5QOMgWjeNmJVVoRCy6toCCoCG4UBKvoy0ymfQwrinDgwLc4H2cKFdJWqhGaweBjQoHNJX7T2tTHANhjUNnwCRDiwzi0gIr_eBKVrW1GwDDlDHhQRMJdD7LB-ejrcHj_7p7usrcbd3GWvzzk7Z477edXA9d5HV62s4_H0e2x63-6o57rnLju8zSaMHLT6vJfl9D64sJaddmrrS6tVOdrnsXAqMdYHGnKuZKMhxWiIhwaExOhZRjqUAacGSYwhyAQAhtjAiWwEpQqpjmPVExLaPZ3d1emRqaNetLa2UrHxvredkPtxweJ_TkLBIDSb1pQYwM |
ClassificationCodes | TN957.52 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.12305/j.issn.1001-506X.2022.02.03 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | Camouflage image segmentation based on transfer learning and attention mechanism |
EndPage | 384 |
ExternalDocumentID | xtgcydzjs202202003 |
GroupedDBID | -0Y 2B. 4A8 5XA 5XJ 92E 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CUBFJ CW9 PSX TCJ TGP U1G U5S |
ID | FETCH-LOGICAL-s1053-55dbe377ca57862cb18ffd29ea88e8a475f5917044991fff4c91c933c5e77bcd3 |
ISSN | 1001-506X |
IngestDate | Thu May 29 04:00:30 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Keywords | 伪装图像;图像分割;注意力机制;迁移学习 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1053-55dbe377ca57862cb18ffd29ea88e8a475f5917044991fff4c91c933c5e77bcd3 |
PageCount | 9 |
ParticipantIDs | wanfang_journals_xtgcydzjs202202003 |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 系统工程与电子技术 |
PublicationTitle_FL | Systems Engineering and Electronics |
PublicationYear | 2022 |
Publisher | 国防科技大学电子对抗学院,安徽合肥230037 |
Publisher_xml | – name: 国防科技大学电子对抗学院,安徽合肥230037 |
SSID | ssib051375074 ssib002263377 ssib001102898 ssib057620160 ssib023168126 ssib023646287 ssj0042237 |
Score | 2.3215091 |
Snippet | TN957.52;... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 376 |
Title | 基于迁移学习和注意力机制的伪装图像分割 |
URI | https://d.wanfangdata.com.cn/periodical/xtgcydzjs202202003 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RAdKgtiB7ET_ymYOeYmsxkkpnjzDZLEevFFnorm6-KhxXsFnRvYpUqYqFHKygIKoIXBcEq-mc2bX-G702ym0hFqpcwzLy8z51974U3bwiZymWWYiclR8Ru5vg5E04ss8RR4M0D8HdBZk_Izd0IZhf8a4ticezQZqNqabUXTyf9P54r-R-rwhzYFU_J_oNlR0hhAsZgX3iCheF5IBvTSFDVpkbTyMenjGgkqWlDeEijkOqQGoMweobqwMIoql37FqOyRaOAGk61xIGEoLKNS1JTZXBGtSxmmAGcASJUGsEQT4tqjbQ0p1JYhIaayALzIR5JZWAHihrWDIIRFdBF3iyHysIbYFhYtuFFY6lIKxHQhbGoBFGu5VZjiUbJpB4VJ1tGXGp8KxksmnolRFwV3pZVB6wDorAGKUX27ABoWf2AFOVFo8NPI5BVu7-VmQyln6GRogpUxSrdK6_BKeDzcbK2xn6xYNBGE5VvqSYwYAbTMdgQdjJCpaLOIkvXSg2cgkEkAy1CwueWTW4qf4MVbcK1lzmOHFLZELPaeKzhXXgYNAIVXt6tt88HAg1hnSBSmB5RmEYN2f60vPb9o4rMe73l5H7av72CUG7ZQHeChSGWPkzombnrN-sgG2PSRpIOATzn9WlmhleheXVQjzcUBKxOAoTHIUqtkw5IeBm2ORzGTz4ErPZKpCHjh8nUUKyrfxHKnrrr5p3uciNAnD9OjlWZ3aQut-kJMta_dZIcbfT7PEVU8Wp7sP187-eD3Xffio9vB19fF5vPdj6_31nbKJ5u7bzcLta_7L5YG3z_sPfmUbH1o3i4Uaw_Lp58Ok0W2tF8a9ap7i5xViBj4Y4QaZyBVpIOuMSAJbEn8zxlKutImcmOH4pcKC90fR8StDzP_UR5ieI8EVkYxknKz5Dx7p1udpZM8jyROSQaiWDKB6PLIPbCACL31Eu8LM3PkSuV4EvVf9PK0n5znj8Q1AVypN5IF8l47-5qdgmi7l58ufoZ_ALMIp9f |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%BF%81%E7%A7%BB%E5%AD%A6%E4%B9%A0%E5%92%8C%E6%B3%A8%E6%84%8F%E5%8A%9B%E6%9C%BA%E5%88%B6%E7%9A%84%E4%BC%AA%E8%A3%85%E5%9B%BE%E5%83%8F%E5%88%86%E5%89%B2&rft.jtitle=%E7%B3%BB%E7%BB%9F%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF&rft.au=%E5%90%B4%E6%B6%9B&rft.au=%E7%8E%8B%E4%BC%A6%E6%96%87&rft.au=%E6%9C%B1%E6%95%AC%E6%88%90&rft.date=2022-02-01&rft.pub=%E5%9B%BD%E9%98%B2%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E7%94%B5%E5%AD%90%E5%AF%B9%E6%8A%97%E5%AD%A6%E9%99%A2%2C%E5%AE%89%E5%BE%BD%E5%90%88%E8%82%A5230037&rft.issn=1001-506X&rft.volume=44&rft.issue=2&rft.spage=376&rft.epage=384&rft_id=info:doi/10.12305%2Fj.issn.1001-506X.2022.02.03&rft.externalDocID=xtgcydzjs202202003 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxtgcydzjs%2Fxtgcydzjs.jpg |