基于深度残差适配网络的通信辐射源个体识别
TN911.7; 为解决通信辐射源识别中传统的人工特征提取方法鲁棒性不足和深度学习方法需要大量带标签目标域数据的问题,提出一种基于深度残差适配网络的通信辐射源个体识别方法.应用深度学习技术实现从源域到目标域上的迁移识别,只需要将带标签的源域数据和无标签的目标域数据进行训练.原始通信辐射源信号经过预处理后输入网络训练,将源域和目标域的分布差异和网络的损失函数作为优化目标,反复迭代得到最终模型.在实际采集的通信辐射源数据集上的实验结果证明了该方法的可行性和有效性....
Saved in:
Published in | 系统工程与电子技术 Vol. 43; no. 3; pp. 603 - 609 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Chinese |
Published |
国防科技大学电子对抗学院,安徽合肥230037
01.03.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1001-506X |
DOI | 10.12305/j.issn.1001-506X.2021.03.02 |
Cover
Abstract | TN911.7; 为解决通信辐射源识别中传统的人工特征提取方法鲁棒性不足和深度学习方法需要大量带标签目标域数据的问题,提出一种基于深度残差适配网络的通信辐射源个体识别方法.应用深度学习技术实现从源域到目标域上的迁移识别,只需要将带标签的源域数据和无标签的目标域数据进行训练.原始通信辐射源信号经过预处理后输入网络训练,将源域和目标域的分布差异和网络的损失函数作为优化目标,反复迭代得到最终模型.在实际采集的通信辐射源数据集上的实验结果证明了该方法的可行性和有效性. |
---|---|
AbstractList | TN911.7; 为解决通信辐射源识别中传统的人工特征提取方法鲁棒性不足和深度学习方法需要大量带标签目标域数据的问题,提出一种基于深度残差适配网络的通信辐射源个体识别方法.应用深度学习技术实现从源域到目标域上的迁移识别,只需要将带标签的源域数据和无标签的目标域数据进行训练.原始通信辐射源信号经过预处理后输入网络训练,将源域和目标域的分布差异和网络的损失函数作为优化目标,反复迭代得到最终模型.在实际采集的通信辐射源数据集上的实验结果证明了该方法的可行性和有效性. |
Author | 杨俊安 陈浩 刘辉 |
AuthorAffiliation | 国防科技大学电子对抗学院,安徽合肥230037 |
AuthorAffiliation_xml | – name: 国防科技大学电子对抗学院,安徽合肥230037 |
Author_FL | CHEN Hao LIU Hui YANG Jun'an |
Author_FL_xml | – sequence: 1 fullname: CHEN Hao – sequence: 2 fullname: YANG Jun'an – sequence: 3 fullname: LIU Hui |
Author_xml | – sequence: 1 fullname: 陈浩 – sequence: 2 fullname: 杨俊安 – sequence: 3 fullname: 刘辉 |
BookMark | eNo9j7tKA0EYRqeIYIx5Cythx3_2n9kdwUaCNwjYKNiFzWQ2ZJENOIqXKkiUgCgRuyCIjYVC1CqyEn2ZvWTfQkWx-uAU5_DNkELYDjUhcwwosxHEQkBbxoSUATBLgLNDbbAZBaRgF0jxH0-TsjGtOgiGrgCXF8lSchfF0VU6ek2ih3R4kYyGeec0P7vMxtfZ-2026OadQfx5P_noJy_dNOrHb4_x-GbyfJ70nmbJlO_tGl3-2xLZXl3Zqqxb1c21jcpy1TIMBFqca8GZi7avEDSi5J5SrnQ9xwWHSy0085h0OPI6KsUU6kWlpJZ2o659LRmWyPyv99ALfS9s1oL2wV74Xawd7TfVceMkMD9_AQEQvwBgamVI |
ClassificationCodes | TN911.7 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.12305/j.issn.1001-506X.2021.03.02 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | Communication transmitter individual identification based on deep residual adaptation network |
EndPage | 609 |
ExternalDocumentID | xtgcydzjs202103003 |
GrantInformation_xml | – fundername: (安徽省自然科学基金); (国防科技大学科研计划项目) funderid: (安徽省自然科学基金); (国防科技大学科研计划项目) |
GroupedDBID | -0Y 2B. 4A8 5XA 5XJ 92E 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CUBFJ CW9 PSX TCJ TGP U1G U5S |
ID | FETCH-LOGICAL-s1053-44e541732fc30e3384acc787a670648e5e1a186434b3cc1c3e9cc8e82dbefe813 |
ISSN | 1001-506X |
IngestDate | Thu May 29 04:00:30 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Keywords | 特征提取 辐射源个体识别 迁移学习 深度学习 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1053-44e541732fc30e3384acc787a670648e5e1a186434b3cc1c3e9cc8e82dbefe813 |
PageCount | 7 |
ParticipantIDs | wanfang_journals_xtgcydzjs202103003 |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 系统工程与电子技术 |
PublicationTitle_FL | Systems Engineering and Electronics |
PublicationYear | 2021 |
Publisher | 国防科技大学电子对抗学院,安徽合肥230037 |
Publisher_xml | – name: 国防科技大学电子对抗学院,安徽合肥230037 |
SSID | ssib051375074 ssib002263377 ssib001102898 ssib057620160 ssib023168126 ssib023646287 ssj0042237 |
Score | 2.315528 |
Snippet | TN911.7;... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 603 |
Title | 基于深度残差适配网络的通信辐射源个体识别 |
URI | https://d.wanfangdata.com.cn/periodical/xtgcydzjs202103003 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9VAMNQWRA_iJ35T0D2-mmR3k13wsunLo4j1Ygu9lSTdVDw8wfcK2lORKoIoVW9FEC8eFKqeKk-qf-a9175_4cxmmwQqUr2EYXZ2Z2Ynm5kJu7OOc93LWehmOSwkN9UNFiZuI_HDvOF5eZoKnoa5SRRn7wQz8-zWAl8YO_KmtmtppZtOZat_PFfyP1YFHNgVT8n-g2XLQQEBMNgXnmBheB7KxiTmRLZIpEjM8CliEgckCknkYRNgVIAYFRMRGUyIcCxxf4PwDcCJaJIYujSJ9AwQETmNgIQBmSWWBYsWUUAjSBQT6ZoBXUMTIC_EAI0gqiCGASkSqxYRARILgKN6NGzYUeRo-bb2heSIUcKIbcZE1UAkgDnSqKZhFxChUDwAQGZV7lJGqaVEhigakMuqBUibOHShD_TH4WCCaiRGVCmsprbF_hrxa3vDzMtsjBChusgUevhG9tBMZykg8GCILGRHsxzUhuNURdL2knVio47yYUGU4pqpig1fjt2FkResqvAXvFsUubH-Bne0cddc5lg6pKJulV14tOZdApfWApXA1JU46AOBBzdOEDlMlRymcIZMQV-_8v3ljsxH3eXs8dLq_Q5SudQU0J3wwxC3Pkyo5uztu1WQjTFpLUmHAJ7S6jSzj1eheVVQjzcUBH6VBHCPQpRaJR2Q8PpY5nA_fmIQsJorkfYFPwpfFKvWjb8oZU7dtfOkvVwLEOdOOidsZjepimV6yhlbvXfaOV6r93nGuTl43-v3Xg23vw16H4dbLwbbW6O1J6OnL3d3Xu_-eLe7uT5a2-z_-rD3c2PwdX3Y2-h__9Tfebv35dng-eezznwrnpueadjrSxodSFpogzHNmRdSP8-oqykVLMky8I9JEEIeIDTXXuIJyAhYSrPMy6iWWSa08JdSnWvh0XPOePtBW593JnOJNbeY9jOpGXdZygK5JL3EzSFf4Tq74Fyzui_az1Nn8aBFLx6K6pJzrFpLl53x7sMVfQUC72561b4JvwH_C6JD |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B7%B1%E5%BA%A6%E6%AE%8B%E5%B7%AE%E9%80%82%E9%85%8D%E7%BD%91%E7%BB%9C%E7%9A%84%E9%80%9A%E4%BF%A1%E8%BE%90%E5%B0%84%E6%BA%90%E4%B8%AA%E4%BD%93%E8%AF%86%E5%88%AB&rft.jtitle=%E7%B3%BB%E7%BB%9F%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF&rft.au=%E9%99%88%E6%B5%A9&rft.au=%E6%9D%A8%E4%BF%8A%E5%AE%89&rft.au=%E5%88%98%E8%BE%89&rft.date=2021-03-01&rft.pub=%E5%9B%BD%E9%98%B2%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E7%94%B5%E5%AD%90%E5%AF%B9%E6%8A%97%E5%AD%A6%E9%99%A2%2C%E5%AE%89%E5%BE%BD%E5%90%88%E8%82%A5230037&rft.issn=1001-506X&rft.volume=43&rft.issue=3&rft.spage=603&rft.epage=609&rft_id=info:doi/10.12305%2Fj.issn.1001-506X.2021.03.02&rft.externalDocID=xtgcydzjs202103003 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxtgcydzjs%2Fxtgcydzjs.jpg |