卫星与雷达位置数据自适应关联

V219%TP79%TN957; 卫星与雷达间的数据关联能够实现海上预警探测过程中由大范围预警向精细跟踪过渡转换,但传统关联模型关联速度慢且难以适应舰船编队目标的非刚性变换、虚警漏报等情形.对此,提出一种卫星与雷达位置数据自适应关联模型.首先,采用多层神经网络提取卫星数据和雷达数据的整体差异参数.然后,将参数通过位移变换估计网络实现两类信源目标的匹配,解决不同信源间的时间间隔和定位误差导致的空间位置差异.最后,对匹配后的目标进行关联判决.仿真实验结果表明,该模型关联速度快,精度高,能够实时处理大规模多源数据关联任务.同时在应对非刚性变换、定位误差、虚警漏报等场景下有较好的鲁棒性....

Full description

Saved in:
Bibliographic Details
Published in系统工程与电子技术 Vol. 43; no. 1; pp. 91 - 98
Main Authors 熊振宇, 崔亚奇, 熊伟, 顾祥岐
Format Journal Article
LanguageChinese
Published 海军航空大学信息融合研究所,山东烟台264001 2021
Subjects
Online AccessGet full text
ISSN1001-506X
DOI10.3969/j.issn.1001-506X.2021.01.12

Cover

Abstract V219%TP79%TN957; 卫星与雷达间的数据关联能够实现海上预警探测过程中由大范围预警向精细跟踪过渡转换,但传统关联模型关联速度慢且难以适应舰船编队目标的非刚性变换、虚警漏报等情形.对此,提出一种卫星与雷达位置数据自适应关联模型.首先,采用多层神经网络提取卫星数据和雷达数据的整体差异参数.然后,将参数通过位移变换估计网络实现两类信源目标的匹配,解决不同信源间的时间间隔和定位误差导致的空间位置差异.最后,对匹配后的目标进行关联判决.仿真实验结果表明,该模型关联速度快,精度高,能够实时处理大规模多源数据关联任务.同时在应对非刚性变换、定位误差、虚警漏报等场景下有较好的鲁棒性.
AbstractList V219%TP79%TN957; 卫星与雷达间的数据关联能够实现海上预警探测过程中由大范围预警向精细跟踪过渡转换,但传统关联模型关联速度慢且难以适应舰船编队目标的非刚性变换、虚警漏报等情形.对此,提出一种卫星与雷达位置数据自适应关联模型.首先,采用多层神经网络提取卫星数据和雷达数据的整体差异参数.然后,将参数通过位移变换估计网络实现两类信源目标的匹配,解决不同信源间的时间间隔和定位误差导致的空间位置差异.最后,对匹配后的目标进行关联判决.仿真实验结果表明,该模型关联速度快,精度高,能够实时处理大规模多源数据关联任务.同时在应对非刚性变换、定位误差、虚警漏报等场景下有较好的鲁棒性.
Author 顾祥岐
熊伟
熊振宇
崔亚奇
AuthorAffiliation 海军航空大学信息融合研究所,山东烟台264001
AuthorAffiliation_xml – name: 海军航空大学信息融合研究所,山东烟台264001
Author_FL XIONG Wei
CUI Yaqi
GU Xiangqi
XIONG Zhenyu
Author_FL_xml – sequence: 1
  fullname: XIONG Zhenyu
– sequence: 2
  fullname: CUI Yaqi
– sequence: 3
  fullname: XIONG Wei
– sequence: 4
  fullname: GU Xiangqi
Author_xml – sequence: 1
  fullname: 熊振宇
– sequence: 2
  fullname: 崔亚奇
– sequence: 3
  fullname: 熊伟
– sequence: 4
  fullname: 顾祥岐
BookMark eNrjYmDJy89LZWBQNjTQM7Y0s9TP0sssLs7TMzQwMNQ1NTCL0DMyMDLUMzDUMzRiYeCEC3Mw8BYXZyYZmBoam5samJtwMmg97V39bMb8Jzv6Xs7e_mLfvid7e5_vXfds6oZnvetetK962dD0dNeUp62bXzRO4WFgTUvMKU7lhdLcDKFuriHOHro-_u6ezo4-usWGBqZGuqmWBmnGhilJaYnJxmmJFsmGFknJBinmxoaWZoZJlsZmaeampiZGialmxqlpBomWKSbGaUZm5hYmBmbJFklJyRbG3AxaEHPLE_PSEvPS47PyS4vygDbGV5SkJ1emVGUVg3xnAIRGxgAWS1hZ
ClassificationCodes V219%TP79%TN957
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-506X.2021.01.12
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Adaptive association for satellite and radar position data
EndPage 98
ExternalDocumentID xtgcydzjs202101012
GrantInformation_xml – fundername: 国家自然科学基金
  funderid: (61032001)
GroupedDBID -0Y
2B.
4A8
5XA
5XJ
92E
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
PSX
TCJ
TGP
U1G
U5S
ID FETCH-LOGICAL-s1052-e90f31dbfac3fa8c18bc0d731961b936f75542ae63ef0a9d43f2678406c8bbc83
ISSN 1001-506X
IngestDate Thu May 29 04:00:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords 舰船编队目标
空间位置误差
多源数据关联
神经网络
自适应模型
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1052-e90f31dbfac3fa8c18bc0d731961b936f75542ae63ef0a9d43f2678406c8bbc83
PageCount 8
ParticipantIDs wanfang_journals_xtgcydzjs202101012
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationTitle 系统工程与电子技术
PublicationTitle_FL Systems Engineering and Electronics
PublicationYear 2021
Publisher 海军航空大学信息融合研究所,山东烟台264001
Publisher_xml – name: 海军航空大学信息融合研究所,山东烟台264001
SSID ssib051375074
ssib002263377
ssib001102898
ssib057620160
ssib023168126
ssib023646287
ssj0042237
Score 2.2794464
Snippet V219%TP79%TN957;...
SourceID wanfang
SourceType Aggregation Database
StartPage 91
Title 卫星与雷达位置数据自适应关联
URI https://d.wanfangdata.com.cn/periodical/xtgcydzjs202101012
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFB9qC6IH8RO_KdS5CKnJfCQzx5ndLEWsF1vorWyyieJhBbsF7UkF0Us9VRA8eFcoggdFaP-atrb_he-9ZDdbFalCCMPMmzfvg-T9ZpiZx9gNk8cilFIFZTcPA2VzGWCUC3rwH8Q1SJ3T0sX83XhuUd1e0ksTx16P7VpaHWSz-dofz5X8j1ehDvyKp2T_wbMjplABZfAvvMHD8D6Sj3mquWlz53kac2u47fBUcW-4SXlqufXcJzw13Kf4YFMb6dMECy6lXpr7EAumqoG-CXcOu5uQG4FDeMetorGgLIkm4lXS4CGuJZ6Se08FT5JoHN1prHHQxY_JliBDr5HGtbmtBHA4IorU4m603xhpDTUiCbZQp5Q3AZRGUiSiIlkdkehDJCMuQNIC8ZoWy11E5iFhHQnlBa_Siw4XRESzFIKCeNINLRKjldEihqwGPCzKgAIo7pJaQxfTwB0cCvWISA9wWEr-0GgC4IDdQ1Kk4hMTMXlCtEiuCJ_KjmAm1ErWtjYdcCTgzrBetakCDW5l0yFlcRxFourCqkNfXBVWqoRmNUCpsnb_GvqkjS2FPmQ_O2I_ixbCi2nrzeqH7xZ_MrifP-2tPVxBKrxtEMDMlEiSSE-yKdeev3OvgdaIRMem5gDbpWzOMAtMgBY1UB7zEsSigf46koBNm6kGTHMFXm44RE0KYColQhoKfpzN1Frd-otOdNSuX3b798dQ4cJpdqqezk276ts8wybWHpxlJ8cu-TzHbu6uf9p792Hn25uD91_3t7d3ttZ_bG3uvf28t765_-rjwbMXu983dl9-2X--cZ4tdtKF1lxQZygJVmBeIoLChqWMehn86GTZNXlksjzsJRjWoszKuEwArYtuEcuiDLu2p2QpAB0CiM5NluVGXmCT_Uf94iKbFiqTiSpUFieZ0qWwOZ4CjwttdWaM7F1iM7Wmy_UfaGX5d_ddPhLVFXYCy9VK4lU2OXi8WlwDbD3Irtdu_wmnPJMq
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%8D%AB%E6%98%9F%E4%B8%8E%E9%9B%B7%E8%BE%BE%E4%BD%8D%E7%BD%AE%E6%95%B0%E6%8D%AE%E8%87%AA%E9%80%82%E5%BA%94%E5%85%B3%E8%81%94&rft.jtitle=%E7%B3%BB%E7%BB%9F%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF&rft.au=%E7%86%8A%E6%8C%AF%E5%AE%87&rft.au=%E5%B4%94%E4%BA%9A%E5%A5%87&rft.au=%E7%86%8A%E4%BC%9F&rft.au=%E9%A1%BE%E7%A5%A5%E5%B2%90&rft.date=2021&rft.pub=%E6%B5%B7%E5%86%9B%E8%88%AA%E7%A9%BA%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E8%9E%8D%E5%90%88%E7%A0%94%E7%A9%B6%E6%89%80%2C%E5%B1%B1%E4%B8%9C%E7%83%9F%E5%8F%B0264001&rft.issn=1001-506X&rft.volume=43&rft.issue=1&rft.spage=91&rft.epage=98&rft_id=info:doi/10.3969%2Fj.issn.1001-506X.2021.01.12&rft.externalDocID=xtgcydzjs202101012
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxtgcydzjs%2Fxtgcydzjs.jpg