基于混合控制算法的爬壁机器人跟踪控制
TP242; 为解决爬壁机器人轨迹跟踪过程中速度突变与输入抖振的问题,提出一种基于神经动力学模型的反演运动学控制器与组合趋近律神经滑模动力学控制的混合鲁棒控制算法.利用神经动力学模型获取有界、平滑的虚拟位姿误差信号,解决了传统反演控制法引起的速度跳变问题;引入自适应径向基神经网络(RBFNN)调节基于组合趋近律的滑模增益,消除了抖振现象.设计过程采用Lyapunov函数,保证了控制系统的稳定与收敛.通过仿真数据与实验结果证明了所提算法的有效性....
Saved in:
Published in | 计算机集成制造系统 Vol. 29; no. 11; pp. 3560 - 3571 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Chinese |
Published |
河北工业大学 机械工程学院,天津 300130
01.11.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1006-5911 |
DOI | 10.13196/j.cims.2022.0895 |
Cover
Abstract | TP242; 为解决爬壁机器人轨迹跟踪过程中速度突变与输入抖振的问题,提出一种基于神经动力学模型的反演运动学控制器与组合趋近律神经滑模动力学控制的混合鲁棒控制算法.利用神经动力学模型获取有界、平滑的虚拟位姿误差信号,解决了传统反演控制法引起的速度跳变问题;引入自适应径向基神经网络(RBFNN)调节基于组合趋近律的滑模增益,消除了抖振现象.设计过程采用Lyapunov函数,保证了控制系统的稳定与收敛.通过仿真数据与实验结果证明了所提算法的有效性. |
---|---|
AbstractList | TP242; 为解决爬壁机器人轨迹跟踪过程中速度突变与输入抖振的问题,提出一种基于神经动力学模型的反演运动学控制器与组合趋近律神经滑模动力学控制的混合鲁棒控制算法.利用神经动力学模型获取有界、平滑的虚拟位姿误差信号,解决了传统反演控制法引起的速度跳变问题;引入自适应径向基神经网络(RBFNN)调节基于组合趋近律的滑模增益,消除了抖振现象.设计过程采用Lyapunov函数,保证了控制系统的稳定与收敛.通过仿真数据与实验结果证明了所提算法的有效性. |
Author | 张小俊 赵金亮 吴亚淇 谢必成 |
AuthorAffiliation | 河北工业大学 机械工程学院,天津 300130 |
AuthorAffiliation_xml | – name: 河北工业大学 机械工程学院,天津 300130 |
Author_FL | WU Yaqi XIE Bicheng ZHANG Xiaojun ZHAO Jinliang |
Author_FL_xml | – sequence: 1 fullname: ZHANG Xiaojun – sequence: 2 fullname: WU Yaqi – sequence: 3 fullname: XIE Bicheng – sequence: 4 fullname: ZHAO Jinliang |
Author_xml | – sequence: 1 fullname: 张小俊 – sequence: 2 fullname: 吴亚淇 – sequence: 3 fullname: 谢必成 – sequence: 4 fullname: 赵金亮 |
BookMark | eNotj81Kw0AcxPdQwVr7AL6CkLj_3ezXUYpfUPCi57LZ7kqDpuAqSm-Ch5yKF5GK0IMHRcSLYCTP0yR9DAP1NDMwzPDbQK10nFqEtgCHQEHxnSQ0owsfEkxIiKViLdQGjHnAFMA66no_ipvIOBWMtREv58WimFZ5Xj5k1fStzH7qr6fq-7F-vq-zz_L1rnopytn7oiiW-Xz5-7HqbKI1p8-97f5rB53u7530DoP-8cFRb7cfeMCMBMxIO6SWY3BYSGFBRlrFscHCimgYU-Y0dkKqCHjENdMmapwU3FlDJKeYdtD2avdGp06nZ4NkfH2ZNo-DxCeJmUxurxpQCg0hoX8I0l5h |
ClassificationCodes | TP242 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.13196/j.cims.2022.0895 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | Tracking control of wall climbing robot based on hybrid control algorithm |
EndPage | 3571 |
ExternalDocumentID | jsjjczzxt202311002 |
GroupedDBID | 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS CDYEO PSX TCJ |
ID | FETCH-LOGICAL-s1052-5c8ed3e601f0787e184a9bbc07e74db35fa0f78941646a5ac4416876fec286303 |
ISSN | 1006-5911 |
IngestDate | Thu May 29 04:00:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | 神经动力学模型 neural sliding mode control hybrid control 轨迹跟踪 反演控制 混合控制 neuro dynamics model wall climbing robot 神经滑模控制 爬壁机器人 trajectory tracking backstepping control |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1052-5c8ed3e601f0787e184a9bbc07e74db35fa0f78941646a5ac4416876fec286303 |
PageCount | 12 |
ParticipantIDs | wanfang_journals_jsjjczzxt202311002 |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 计算机集成制造系统 |
PublicationTitle_FL | Computer Integrated Manufacturing Systems |
PublicationYear | 2023 |
Publisher | 河北工业大学 机械工程学院,天津 300130 |
Publisher_xml | – name: 河北工业大学 机械工程学院,天津 300130 |
SSID | ssib006563755 ssib023646381 ssib001102950 ssib051375755 ssib023167363 ssib036438063 ssib000459500 ssib002258428 |
Score | 2.3956754 |
Snippet | TP242;... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 3560 |
Title | 基于混合控制算法的爬壁机器人跟踪控制 |
URI | https://d.wanfangdata.com.cn/periodical/jsjjczzxt202311002 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFA-1vXgRRcVvCjqnkppMMpmZ4yTNUsR6sYXeSj7VQldwtyB7EzzsqXgRUZQePCgiXgRX9u_p7vbP8L3Z2d1p10MVQphMfvM-5m3y3mRn3jjOvUIWARW5dGnJczcEjCsolxDI8br0Sr8Sem3VxqNofSt8sM22F859smYt7bfz1aLz13Ul_2NVqAO74irZf7DslChUQBnsC2ewMJzPZGOSMiIbJFYkDfEsUpJGJOZ44C2PCIE1UK90DVzGEUk5USmRXIMDIhnWSGgeYgEwKkGwCiDMRIxMNAsgKIkShhfWCGQEAmABWql5XnbsizDgq_wTAhjiksiYiEhTECj5TFqJszGUh61A2jjWhRj4Tn4siI0TDYECKN3QMjaIUDYEiMahkV4q01MzP6y1AEZUU4HGbCrMCQjDA4UC1X1DTqX21xMamGWEk9-75kVRetQq0Zoz5K6YJiC0PNDjoek7tUZUtGJ1T4RyxZ7VjKMpRDxF6y6UCKPJhJbUjKHAVgL957HlgvAbD5PGBRkfZb4KmWfRtzxOwMb7MZjoJWDjHW3mPCO-arVrLJ7tYZp6Slc9Md7f9FTC8d3W7m7R6bxsY39hRkGIcJYo5zgLYkmtbTx8bI8HJLPyOwKaSmYvrIb41hrfwuAh4LOF0BTTMFj533AzA_AHU4cDl4HwZveZD6253sl42ktmpgKqd_-0cnohXrPOmk-smHHzonPBDPaW1fjJveQsdJ5edqLBYf-ofzDs9QZvusODL4Pur9GPd8Ofb0cfXo-63wefXw0_9gfvvx71-8e9w-Pf38aYK85WI91M1l2ze4nbgjELdVkhqjKoIs-vIQznlS_CTOZ54fGKh2UesDrzai5kiBn-MpYVMDCJIDapq4KKCCLLq85i83mzuuYsV3nOWR0UYRVmIa3qnGOKJ1FCaA_jlzK77tw1eu6Yt1NrZ96KN86Euumcnz0nt5zF9ov96jbE3e38jrH-H3NynqQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B7%B7%E5%90%88%E6%8E%A7%E5%88%B6%E7%AE%97%E6%B3%95%E7%9A%84%E7%88%AC%E5%A3%81%E6%9C%BA%E5%99%A8%E4%BA%BA%E8%B7%9F%E8%B8%AA%E6%8E%A7%E5%88%B6&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E9%9B%86%E6%88%90%E5%88%B6%E9%80%A0%E7%B3%BB%E7%BB%9F&rft.au=%E5%BC%A0%E5%B0%8F%E4%BF%8A&rft.au=%E5%90%B4%E4%BA%9A%E6%B7%87&rft.au=%E8%B0%A2%E5%BF%85%E6%88%90&rft.au=%E8%B5%B5%E9%87%91%E4%BA%AE&rft.date=2023-11-01&rft.pub=%E6%B2%B3%E5%8C%97%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6+%E6%9C%BA%E6%A2%B0%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%A4%A9%E6%B4%A5+300130&rft.issn=1006-5911&rft.volume=29&rft.issue=11&rft.spage=3560&rft.epage=3571&rft_id=info:doi/10.13196%2Fj.cims.2022.0895&rft.externalDocID=jsjjczzxt202311002 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjjczzxt%2Fjsjjczzxt.jpg |