基于人工势场DDPG算法的移动机械臂协同避障轨迹规划
TP241%TP18; 为了提高移动机械臂在狭窄通道和障碍物约束情况的避障轨迹规划能力,提出一种人工势场法(APF)和深度确定性策略梯度算法(DDPG)结合的改进算法(APF-DDPG).首先,对机械臂设计了 APF规划得到近似姿态,再将研究问题表示为马尔科夫决策过程,设计了状态空间、动作空间和奖惩函数,对规划过程进行阶段性分析处理,设计了一种引导机制来过渡各控制阶段,即避障阶段由DDPG主导训练,目标规划阶段由近似姿态引导DDPG训练,最终获得用于规划的策略模型.最后,建立并设计了固定和随机状态场景的仿真实验,验证了所提算法的有效性.实验结果表明,相较于传统DDPG算法,APF-DDPG算法...
Saved in:
Published in | 计算机集成制造系统 Vol. 30; no. 12; pp. 4282 - 4291 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Chinese |
Published |
重庆邮电大学工业物联网与网络化控制教育部重点实验室,重庆 400065
31.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1006-5911 |
DOI | 10.13196/j.cims.2023.0369 |
Cover
Loading…
Abstract | TP241%TP18; 为了提高移动机械臂在狭窄通道和障碍物约束情况的避障轨迹规划能力,提出一种人工势场法(APF)和深度确定性策略梯度算法(DDPG)结合的改进算法(APF-DDPG).首先,对机械臂设计了 APF规划得到近似姿态,再将研究问题表示为马尔科夫决策过程,设计了状态空间、动作空间和奖惩函数,对规划过程进行阶段性分析处理,设计了一种引导机制来过渡各控制阶段,即避障阶段由DDPG主导训练,目标规划阶段由近似姿态引导DDPG训练,最终获得用于规划的策略模型.最后,建立并设计了固定和随机状态场景的仿真实验,验证了所提算法的有效性.实验结果表明,相较于传统DDPG算法,APF-DDPG算法能够以更高收敛效率训练得到具有更高效控制性能的策略模型. |
---|---|
AbstractList | TP241%TP18; 为了提高移动机械臂在狭窄通道和障碍物约束情况的避障轨迹规划能力,提出一种人工势场法(APF)和深度确定性策略梯度算法(DDPG)结合的改进算法(APF-DDPG).首先,对机械臂设计了 APF规划得到近似姿态,再将研究问题表示为马尔科夫决策过程,设计了状态空间、动作空间和奖惩函数,对规划过程进行阶段性分析处理,设计了一种引导机制来过渡各控制阶段,即避障阶段由DDPG主导训练,目标规划阶段由近似姿态引导DDPG训练,最终获得用于规划的策略模型.最后,建立并设计了固定和随机状态场景的仿真实验,验证了所提算法的有效性.实验结果表明,相较于传统DDPG算法,APF-DDPG算法能够以更高收敛效率训练得到具有更高效控制性能的策略模型. |
Abstract_FL | To improve the obstacle avoidance trajectory planning ability of mobile robotic arm in narrow channel and obstacle constraint situations,by combining Artificial Potential Field method(APF)and Deep Deterministic Policy Gradient algorithm(DDPG),an improved algorithm named APF-DDPG was proposed.The APF planning was de-signed for the robotic arm to get the approximate pose,and the research problem was represented as a Markov deci-sion process.The state space,action space and reward and punishment functions were designed,and the planning process was analyzed and processed in phases.A mechanism for guiding was designed to transition the various con-trol phases,which the obstacle avoidance phase of the training was dominated by DDPG,and the approximate pose dominated the goal planning phase to guide the DDPG for the training.Thus the strategy model for planning was ob-tained from the training.Finally,simulation experiments of fixed and random state scenarios were established and designed to verify the effectiveness of the proposed algorithm.The experimental results showed that APF-DDPG al-gorithm could be trained with higher convergence efficiency to obtain a policy model with more efficient control per-formance by comparing with the traditional DDPG algorithm. |
Author | 李勇 张朝兴 柴燎宁 |
AuthorAffiliation | 重庆邮电大学工业物联网与网络化控制教育部重点实验室,重庆 400065 |
AuthorAffiliation_xml | – name: 重庆邮电大学工业物联网与网络化控制教育部重点实验室,重庆 400065 |
Author_FL | ZHANG Chaoxing CHAI Liaoning LI Yong |
Author_FL_xml | – sequence: 1 fullname: LI Yong – sequence: 2 fullname: ZHANG Chaoxing – sequence: 3 fullname: CHAI Liaoning |
Author_xml | – sequence: 1 fullname: 李勇 – sequence: 2 fullname: 张朝兴 – sequence: 3 fullname: 柴燎宁 |
BookMark | eNotj8tKw0AYRmdRwVr7AL6CkDj_3NIspbVVKOhC12WSTKRBUzCK0p1SUIo3BBFKQRCkXYngQoxIXqaTpG9hQFcfZ3MO3xIqhb1QIbQC2AQKtlgLTLd7GJkEE2piKuwSKgPGwuA2wCKqRlHXKZALanFeRk39HM_i21kc689XPUz0OG40dlrZ21P68ZiNBtnkWw-n6ThOX97zywt9c6fvr-fnyXw0zn-mefKVTwb66mEZLfjyIFLV_62gvebGbn3TaG-3turrbSMCzMGgvsU95fiCKkokltQRnrBqQBhYjLnMYtx2nRpWnmBYcgwOowQ7nictX7hK0Qpa_fOeytCX4X4n6J0chUWxE0RB4Pb7Z8fFcQYEA9BfLbVomQ |
ClassificationCodes | TP241%TP18 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.13196/j.cims.2023.0369 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | Collaborative obstacle avoidance trajectory planning for mobile robotic arms based on artificial potential field DDPG algorithm |
EndPage | 4291 |
ExternalDocumentID | jsjjczzxt202412011 |
GroupedDBID | 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS CDYEO PSX TCJ |
ID | FETCH-LOGICAL-s1051-3f75debf63e32a0a3b6d6781241744c47459cb80ed640a501b4320bdda7f6cee3 |
ISSN | 1006-5911 |
IngestDate | Thu May 29 04:00:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | deep deterministic policy gradient 深度确定性策略梯度 避障轨迹规划 人工势场法 mobile robotic arm artificial potential field guided training 引导训练 移动机械臂 obstacle avoidance trajectory planning |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1051-3f75debf63e32a0a3b6d6781241744c47459cb80ed640a501b4320bdda7f6cee3 |
PageCount | 10 |
ParticipantIDs | wanfang_journals_jsjjczzxt202412011 |
PublicationCentury | 2000 |
PublicationDate | 2024-12-31 |
PublicationDateYYYYMMDD | 2024-12-31 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | 计算机集成制造系统 |
PublicationTitle_FL | Computer Integrated Manufacturing Systems |
PublicationYear | 2024 |
Publisher | 重庆邮电大学工业物联网与网络化控制教育部重点实验室,重庆 400065 |
Publisher_xml | – name: 重庆邮电大学工业物联网与网络化控制教育部重点实验室,重庆 400065 |
SSID | ssib006563755 ssib023646381 ssib001102950 ssib051375755 ssib023167363 ssib036438063 ssib000459500 ssib002258428 |
Score | 2.4511452 |
Snippet | TP241%TP18; 为了提高移动机械臂在狭窄通道和障碍物约束情况的避障轨迹规划能力,提出一种人工势场法(APF)和深度确定性策略梯度算法(DDPG)结合的改进算法(APF-DDPG).首先,对机械臂设计了... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 4282 |
Title | 基于人工势场DDPG算法的移动机械臂协同避障轨迹规划 |
URI | https://d.wanfangdata.com.cn/periodical/jsjjczzxt202412011 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEB5ichFEFBXfBLRPsnGmZ7qn-zizO2sQI4IJ5BZ2XsaAK5gNyN6UgBJ8IYgQAoIgyUkED-KK5M9kks2_sKq2MzsxOUQvQ6e6qrqqvt2u6s10t2Vdt3nLbrmZrOG1DjWPZ6KmcqFqPod8kviZnUncnDx1V07OeLdnxezI6InKW0tLnXgi6R66r-R_UAUa4Iq7ZP8B2VIpEKAN-MITEIbnkTBmkWC6ycKARR4-VWQaSBEs9FkgsKGA0iTmOnQ1GvdusQj6IqZ9FkkWukwLpGhQ4VGXz8LQSAYKeUgSGwFnoc0ixZTPFCeeBlMD7TZTdRZpqE5pPI0KQRCYwwbpUUgPNTZgCBwLxBUb3FO3VyNTb8QCZ5-RxgDQGTIlkYKCttEQShrXZoGNUuAR2k9e6PLdZVLToCiBEKjxhz0QrToJ00jAhSxA9PYJg_EUH_SdtIB5g7tg9n454eX5jOazTnb5GCQcIyDbNUYORDHkgBdhFHgYEmxAqGQFPmBQGEgcVrOAggcB1mQIxFU7hkdFFcrA9Tq5Af4MAhaZIUzAJMKuBwoBVU6GuQRUaTOBjIiRrzrCriAgnIkCZvP6QR9veFR2VlIe_qYktEl5Jiea_5WZ7z6vZDhYrvJKtQTljHNoJsapnVJx8vARHovP3QkolvSw7ChfBl1YXFhIut2nHcTIwYL0mDXGYdUHeXYsaEzduV9df2hROU8SaleuRXUjN9TTlfU0LFZcf7jxmuOxD5Xz5vDyBMg_ZYKDP11lD_uFA9I-3ZxcRsm8GYHu3fzbOdr4185b7QeVGnX6lHXSLC7Hg8FMcdoa6c6fsZrFp95W781Wr1f8-FKsbBZrPZwBdr5-3P7-YWd1eWf9V7Gysb3W2_78rf_iefH6bfHu1e6zzd3Vtf7vjf7mz_76cvHy_VlrphlN1ydr5vaU2iKsmZyam_sizeJcuplLE3IsU6hMoZ53fM9LPB9imcTKzlLp2S1hO7HncjtO05afSyid3XPWaPtxOztvjac6SUUuhVa57WW5VJlWyhFJmjtSKTe_YF0zfs-Z2XFx7iCqF4_Edck6PvyuXrZGO0-WsitQ93fiq-bT8Acair4_ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E4%BA%BA%E5%B7%A5%E5%8A%BF%E5%9C%BADDPG%E7%AE%97%E6%B3%95%E7%9A%84%E7%A7%BB%E5%8A%A8%E6%9C%BA%E6%A2%B0%E8%87%82%E5%8D%8F%E5%90%8C%E9%81%BF%E9%9A%9C%E8%BD%A8%E8%BF%B9%E8%A7%84%E5%88%92&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E9%9B%86%E6%88%90%E5%88%B6%E9%80%A0%E7%B3%BB%E7%BB%9F&rft.au=%E6%9D%8E%E5%8B%87&rft.au=%E5%BC%A0%E6%9C%9D%E5%85%B4&rft.au=%E6%9F%B4%E7%87%8E%E5%AE%81&rft.date=2024-12-31&rft.pub=%E9%87%8D%E5%BA%86%E9%82%AE%E7%94%B5%E5%A4%A7%E5%AD%A6%E5%B7%A5%E4%B8%9A%E7%89%A9%E8%81%94%E7%BD%91%E4%B8%8E%E7%BD%91%E7%BB%9C%E5%8C%96%E6%8E%A7%E5%88%B6%E6%95%99%E8%82%B2%E9%83%A8%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E9%87%8D%E5%BA%86+400065&rft.issn=1006-5911&rft.volume=30&rft.issue=12&rft.spage=4282&rft.epage=4291&rft_id=info:doi/10.13196%2Fj.cims.2023.0369&rft.externalDocID=jsjjczzxt202412011 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjjczzxt%2Fjsjjczzxt.jpg |