Quantum algorithms for drone mission planning

Mission planning often involves optimising the use of ISR (Intelligence, Surveillance and Reconnaissance) assets in order to achieve a set of mission objectives within allowed parameters subject to constraints. The missions of interest here, involve routing multiple UAVs visiting multiple targets, u...

Full description

Saved in:
Bibliographic Details
Published inProceedings of SPIE, the international society for optical engineering Vol. 13202; pp. 1320209 - 1320209-14
Main Authors Davies, Ethan, Kalidindi, Pranav
Format Conference Proceeding
LanguageEnglish
Published SPIE 15.11.2024
Online AccessGet full text

Cover

Loading…
Abstract Mission planning often involves optimising the use of ISR (Intelligence, Surveillance and Reconnaissance) assets in order to achieve a set of mission objectives within allowed parameters subject to constraints. The missions of interest here, involve routing multiple UAVs visiting multiple targets, utilising sensors to capture data relating to each target. Finding such solutions is often an NP-Hard problem and cannot be solved efficiently on classical computers. Furthermore, during the mission new constraints and objectives may arise, requiring a new solution to be computed within a short time period. To achieve this we investigate near term quantum algorithms that have the potential to offer speed-ups against current classical methods. We demonstrate how a large family of these problems can be formulated as a Mixed Integer Linear Program (MILP) and then converted to a Quadratic Unconstrained Binary Optimisation (QUBO). The formulation provided is versatile and can be adapted for many different constraints with clear qubit scaling provided. We discuss the results of solving the QUBO formulation using commercial quantum annealers and compare the solutions to current edge classical solvers. We also analyse the results from solving the QUBO using Quantum Approximate Optimisation Algorithms (QAOA) and discuss their results. Finally, we also provide efficient methods to encode to the problem into the Variational Quantum Eigensolver (VQE) formalism, where we have tailored the ansatz to the problem making efficient use of the qubits available.
AbstractList Mission planning often involves optimising the use of ISR (Intelligence, Surveillance and Reconnaissance) assets in order to achieve a set of mission objectives within allowed parameters subject to constraints. The missions of interest here, involve routing multiple UAVs visiting multiple targets, utilising sensors to capture data relating to each target. Finding such solutions is often an NP-Hard problem and cannot be solved efficiently on classical computers. Furthermore, during the mission new constraints and objectives may arise, requiring a new solution to be computed within a short time period. To achieve this we investigate near term quantum algorithms that have the potential to offer speed-ups against current classical methods. We demonstrate how a large family of these problems can be formulated as a Mixed Integer Linear Program (MILP) and then converted to a Quadratic Unconstrained Binary Optimisation (QUBO). The formulation provided is versatile and can be adapted for many different constraints with clear qubit scaling provided. We discuss the results of solving the QUBO formulation using commercial quantum annealers and compare the solutions to current edge classical solvers. We also analyse the results from solving the QUBO using Quantum Approximate Optimisation Algorithms (QAOA) and discuss their results. Finally, we also provide efficient methods to encode to the problem into the Variational Quantum Eigensolver (VQE) formalism, where we have tailored the ansatz to the problem making efficient use of the qubits available.
Author Kalidindi, Pranav
Davies, Ethan
Author_xml – sequence: 1
  givenname: Ethan
  surname: Davies
  fullname: Davies, Ethan
  organization: Thales UK Ltd. (United Kingdom)
– sequence: 2
  givenname: Pranav
  surname: Kalidindi
  fullname: Kalidindi, Pranav
  organization: Thales UK Ltd. (United Kingdom)
BookMark eNotj81Kw0AURgesYFu78QmyFlLvvZP5W0pRKxREUHAXJpOZGklmQqZ9fyN29W0-zuGs2CKm6Bm7Q9gionpA2nLgkldwxTZGaRQIUiOSWLAlkFKl0vLrhq1y_gEgLZRZsvL9bOPpPBS2P6apO30PuQhpKtpphhdDl3OXYjH2NsYuHm_ZdbB99pvLrtnn89PHbl8e3l5ed4-HMiMIKLWjSjkI5HQjgxfWCElethxcAENSamMFd67lwsr51nAIIJzRXlNTkeZrdv_PzWPn63FKzvt29ucaof6LrZHqSyz_BQ26Rus
ContentType Conference Proceeding
Copyright COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
Copyright_xml – notice: COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
DOI 10.1117/12.3036340
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Editor Ducci, Sara
Schwartz, Sylvain
Sorelli, Giacomo
Editor_xml – sequence: 1
  givenname: Giacomo
  surname: Sorelli
  fullname: Sorelli, Giacomo
  organization: Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB (Germany)
– sequence: 2
  givenname: Sara
  surname: Ducci
  fullname: Ducci, Sara
  organization: Lab. Matériaux et Phénomènes Quantiques (France)
– sequence: 3
  givenname: Sylvain
  surname: Schwartz
  fullname: Schwartz, Sylvain
  organization: ONERA (France)
EndPage 1320209-14
ExternalDocumentID 10_1117_12_3036340
GroupedDBID 29O
4.4
5SJ
ACGFS
ALMA_UNASSIGNED_HOLDINGS
EBS
F5P
FQ0
R.2
RNS
RSJ
SPBNH
ID FETCH-LOGICAL-s1050-8c247c0f2c8b6fe5a9562e6d30cf0926689a53ccd35a60f2b30f05c98e82b4283
ISBN 9781510681125
1510681124
ISSN 0277-786X
IngestDate Thu Nov 28 04:14:52 EST 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1050-8c247c0f2c8b6fe5a9562e6d30cf0926689a53ccd35a60f2b30f05c98e82b4283
Notes Conference Location: Edinburgh, United Kingdom
Conference Date: 2024-09-16|2024-09-20
ParticipantIDs spie_proceedings_10_1117_12_3036340
PublicationCentury 2000
PublicationDate 20241115
PublicationDateYYYYMMDD 2024-11-15
PublicationDate_xml – month: 11
  year: 2024
  text: 20241115
  day: 15
PublicationDecade 2020
PublicationTitle Proceedings of SPIE, the international society for optical engineering
PublicationYear 2024
Publisher SPIE
Publisher_xml – name: SPIE
SSID ssj0028579
Score 2.2813096
Snippet Mission planning often involves optimising the use of ISR (Intelligence, Surveillance and Reconnaissance) assets in order to achieve a set of mission...
SourceID spie
SourceType Publisher
StartPage 1320209
Title Quantum algorithms for drone mission planning
URI http://www.dx.doi.org/10.1117/12.3036340
Volume 13202
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46X_TJK94p6JtkxqRps0fxgooTRQd7G03a6kC2sU0f_PWek2ZNN_egQildCO3SL-R8OT3nO4QcsyTlYMgjGqk4p6HmKU0MCykGMspYKKBImODcfIhuWuFdW7Z9uSObXTLWdfM1N6_kP6hCG-CKWbJ_QLa8KTTANeALZ0AYzjPkd66deSwbbTzG8-OtDW1EKtmdcvSNKqGZ_UHhvc68EGF12jx9wKvGgOX31_6wO34r9BpO0mEf2CjMCXSuYelpW-nIu7nBuhZ5DeiJLxdx4PgpfhO3VBWMYvJZdTLwELPtijRLF5pxO73xBJ7AIgVcTVbWK_waHCtbmNAvrlifvbJA2t-sUbG3roUWuaRzVnSrCcDraGtFIe00o5Bd7GPizhnvuE6LZBGYT40snV8275_LDbiShfbi5I9iot9kIKHT_yoH5rRs4can_ukY7zfoZhUK8rJKNn1yZuCRXyMLWW-drFR0JTcIdSgGHsUAUAwsioFDMZiguEla11cvFzfU1cWgI2DDjCrDw9iwnBulozyTCexxeRalgpmcNYBxqUYihTGpkEkE3bRgOZOmoTLFNQrsbZFaD563TQLFhcgFUEadqjDJYqX1WRpHcHDARMsdcoTj7fhZPur8fN27v-q1R5b91NontfHwIzsARjfWhw6ob-LOQfQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+SPIE%2C+the+international+society+for+optical+engineering&rft.atitle=Quantum+algorithms+for+drone+mission+planning&rft.au=Davies%2C+Ethan&rft.au=Kalidindi%2C+Pranav&rft.date=2024-11-15&rft.pub=SPIE&rft.isbn=9781510681125&rft.issn=0277-786X&rft.volume=13202&rft.spage=1320209&rft.epage=1320209-14&rft_id=info:doi/10.1117%2F12.3036340&rft.externalDocID=10_1117_12_3036340
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-786X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-786X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-786X&client=summon