基于神经网络的低信噪比CBOC信号组合码序列盲估计

TN911.7; 针对低信噪比下复合二进制偏移载波(composite binary offset carrier,CBOC)信号的组合码序列盲估计问题.首先采用奇异值分解(singular value decomposition,SVD)的算法对CBOC的组合码序列进行可行性验证,可得在已知相关参数的情况下对CBOC信号组合码序列盲估计是可行的;其次就SVD在长序列估计中计算量和存储量需求大的问题,进一步提出主分量神经网络解决上述问题,同时引入最优变步长收敛模型改善神经网络(neural network,NN)收敛速度.利用无监督NN的自适应主分量提取信号特性,避免批处理运算,实现CBOC信...

Full description

Saved in:
Bibliographic Details
Published in系统工程与电子技术 Vol. 40; no. 12; pp. 2824 - 2832
Main Authors 张天骐, 张婷, 熊梅, 赵亮
Format Journal Article
LanguageChinese
Published 重庆邮电大学信号与信息处理重庆市重点实验室,重庆,400065 01.12.2018
Subjects
Online AccessGet full text
ISSN1001-506X
DOI10.3969/j.issn.1001-506X.2018.12.29

Cover

Abstract TN911.7; 针对低信噪比下复合二进制偏移载波(composite binary offset carrier,CBOC)信号的组合码序列盲估计问题.首先采用奇异值分解(singular value decomposition,SVD)的算法对CBOC的组合码序列进行可行性验证,可得在已知相关参数的情况下对CBOC信号组合码序列盲估计是可行的;其次就SVD在长序列估计中计算量和存储量需求大的问题,进一步提出主分量神经网络解决上述问题,同时引入最优变步长收敛模型改善神经网络(neural network,NN)收敛速度.利用无监督NN的自适应主分量提取信号特性,避免批处理运算,实现CBOC信号组合码序列盲估计.实验表明,NN能在-20 dB下达到精确估计序列的目的,且算法有稳定性高、复杂度低、收敛速度快等优点.
AbstractList TN911.7; 针对低信噪比下复合二进制偏移载波(composite binary offset carrier,CBOC)信号的组合码序列盲估计问题.首先采用奇异值分解(singular value decomposition,SVD)的算法对CBOC的组合码序列进行可行性验证,可得在已知相关参数的情况下对CBOC信号组合码序列盲估计是可行的;其次就SVD在长序列估计中计算量和存储量需求大的问题,进一步提出主分量神经网络解决上述问题,同时引入最优变步长收敛模型改善神经网络(neural network,NN)收敛速度.利用无监督NN的自适应主分量提取信号特性,避免批处理运算,实现CBOC信号组合码序列盲估计.实验表明,NN能在-20 dB下达到精确估计序列的目的,且算法有稳定性高、复杂度低、收敛速度快等优点.
Author 赵亮
张婷
熊梅
张天骐
AuthorAffiliation 重庆邮电大学信号与信息处理重庆市重点实验室,重庆,400065
AuthorAffiliation_xml – name: 重庆邮电大学信号与信息处理重庆市重点实验室,重庆,400065
Author_FL XIONG Mei
ZHANG Tianqi
ZHANG Ting
ZHAO Liang
Author_FL_xml – sequence: 1
  fullname: ZHANG Tianqi
– sequence: 2
  fullname: ZHANG Ting
– sequence: 3
  fullname: XIONG Mei
– sequence: 4
  fullname: ZHAO Liang
Author_xml – sequence: 1
  fullname: 张天骐
– sequence: 2
  fullname: 张婷
– sequence: 3
  fullname: 熊梅
– sequence: 4
  fullname: 赵亮
BookMark eNo9j7tKA0EYhaeIYIx5Cjthx39mdvZS6uINAmkU7MLM7k7IIhtwFC-dkCJVEkEQL6gpbCxUbIRdgy-z6_gYGhSrw_mK83HmUCXtpjFCCwQw8x1_KcEdrVNMAIjFwdnBFIiHCcXUr6DqP55Fda07EjhhLgfXrqKgvMuKbGAebk0-NJMzk9-Yq14xGRQf4_Ly8fP5PFhpBtMyfDN5rxz1zf1pmQ3L_oW5fi3eX76exvNoRoldHdf_soa211a3gg2r0VzfDJYblibAwbJVGEmQ1BM2cQUwjzHXVtIJiYxpLHzmEcpjKoWvFHcc4FIqFstIOBHxQumxGlr83T0UqRJpu5V0D_bSH2PraL8dHkcniZ7eJhQYsG8WBmmA
ClassificationCodes TN911.7
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-506X.2018.12.29
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Neural network approach to blind-estimation of combined code sequence in lower SNR CBOC signals
EndPage 2832
ExternalDocumentID xtgcydzjs201812030
GrantInformation_xml – fundername: 国家自然科学基金; 重庆市教育委员会科研项目; 信号与信息处理重庆市市级重点实验室建设项目资助课题
  funderid: (61371164,61671095); (KJ130524,KJ1600427,KJ1600429); (CSTC2009CA2003)资助课题
GroupedDBID -0Y
2B.
4A8
5XA
5XJ
92E
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
PSX
TCJ
TGP
U1G
U5S
ID FETCH-LOGICAL-s1050-4fcdb0b28a417a0383374fb6c1be2ea938125e2ba9ff56605bbf3ebda6d18cb83
ISSN 1001-506X
IngestDate Thu May 29 04:00:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Keywords 复合二进制偏移载波信号
组合码序列
奇异值分解
神经网络
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1050-4fcdb0b28a417a0383374fb6c1be2ea938125e2ba9ff56605bbf3ebda6d18cb83
PageCount 9
ParticipantIDs wanfang_journals_xtgcydzjs201812030
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationTitle 系统工程与电子技术
PublicationTitle_FL Systems Engineering and Electronics
PublicationYear 2018
Publisher 重庆邮电大学信号与信息处理重庆市重点实验室,重庆,400065
Publisher_xml – name: 重庆邮电大学信号与信息处理重庆市重点实验室,重庆,400065
SSID ssib051375074
ssib002263377
ssib001102898
ssib057620160
ssib023168126
ssib023646287
ssj0042237
Score 2.2049773
Snippet TN911.7; 针对低信噪比下复合二进制偏移载波(composite binary offset carrier,CBOC)信号的组合码序列盲估计问题.首先采用奇异值分解(singular value...
SourceID wanfang
SourceType Aggregation Database
StartPage 2824
Title 基于神经网络的低信噪比CBOC信号组合码序列盲估计
URI https://d.wanfangdata.com.cn/periodical/xtgcydzjs201812030
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFA_9ANGD-InfFOoctyaTSTJznGQTilg92EJvJV9b8bCC3YL2JvTQU6sgiB-oPXjxoOJF6Fr8Z3aN_4Tge2-zm1QXqV7Cy3z85s17ycx7w8w8w7iamcLOTCdumCIxG8LFMC-OYzdUK-PcijFMIC4NLNx055fE9WVneWLyZ23X0nonmUs3xp4r-R-tQhroFU_J_oNmR6CQADToF56gYXgeSscsdJiKmK9ZKPApQxZ6TEMiEb7PZEREkymrTFEBEgoKC6rVpFpARExbBKiYBkCX6YgpEfi3ggPZgOh7Q3RBFUwmJTUMBJVBViIqLJmiwspnPiecgPkmCyXTIQDWTWPCtBG2ZJQQfOoPgksmfUKQZT8V0A6W0U3kATiWGjduAAGd1KMtywQTIHdYVjCtWEh9VOb4IgparXI8JgkZJcLZIPLPIEdi-8gCCV-H9RUUS_62GwXblIDVHArIpRSOgjjQGWDQK3ul3XGiH4lglOWi3HVUVketeKQVd1yjDlXntSwPX31F1UP6dkg8MihTAJMHY6B4IMi4rE1suHXOMSlq5GjmG1yUNfzDeX0ek4OT7aVNhPGsxs23tnIVzbfYxtyoDdwxKXGVvVzMOnih-YPOavow27i7xumyOJhlJo1p7nm4y2JaNxdu3K7seTR_a-sB4CvYdnVwmmPUNavyHzAYgssrf8OxbDCIK_8GfGuONyoOTTUBtjFFXxoyfsSYLXt17S99ovN97VbcXq2ZoosnjOOlDzmjBwPCSWNi484p41jtZtHTRtB_s9fb2y7evS66O8X-k6L7qnix2dvf7n3b7T9___3jU_yx8WXnS9Hd7D_eKt4-6u_t9LeeFS8_975--vFh94yxFIWLwXyjjJfSWAMvCUbaVpolZsJlLCwvNm0JshKtxE2tJOd5rMA4507Ok1i1WuDFmU6StOw8yWI3s2SaSPusMdW-187PGTMSpCRSYedWbAnwGZSnvBx8Fxjaczv20vPGbCmClXI8XFv5U68XDlXqonG0-isvGVOd--v5ZbD0O8mV8nv4BVtpvSs
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E4%BD%8E%E4%BF%A1%E5%99%AA%E6%AF%94CBOC%E4%BF%A1%E5%8F%B7%E7%BB%84%E5%90%88%E7%A0%81%E5%BA%8F%E5%88%97%E7%9B%B2%E4%BC%B0%E8%AE%A1&rft.jtitle=%E7%B3%BB%E7%BB%9F%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF&rft.au=%E5%BC%A0%E5%A4%A9%E9%AA%90&rft.au=%E5%BC%A0%E5%A9%B7&rft.au=%E7%86%8A%E6%A2%85&rft.au=%E8%B5%B5%E4%BA%AE&rft.date=2018-12-01&rft.pub=%E9%87%8D%E5%BA%86%E9%82%AE%E7%94%B5%E5%A4%A7%E5%AD%A6%E4%BF%A1%E5%8F%B7%E4%B8%8E%E4%BF%A1%E6%81%AF%E5%A4%84%E7%90%86%E9%87%8D%E5%BA%86%E5%B8%82%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E9%87%8D%E5%BA%86%2C400065&rft.issn=1001-506X&rft.volume=40&rft.issue=12&rft.spage=2824&rft.epage=2832&rft_id=info:doi/10.3969%2Fj.issn.1001-506X.2018.12.29&rft.externalDocID=xtgcydzjs201812030
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxtgcydzjs%2Fxtgcydzjs.jpg