混合方法优化的自适应引力搜索算法
TP273; 针对引力搜索算法存在的易早熟收敛、易陷入局部最优、搜索精度有待提高等缺陷,提出一种混合方法优化的自适应引力搜索算法(gravitational search algorithm ,GSA ) .首先利用Sobol序列初始化种群,增强算法全局搜索能力;其次引入 Hamming贴进度计算种群成熟度,判断种群是否早熟;然后引入Logistic混沌对种群作混沌搜索,变异已陷入局部最优的粒子位置;最后基于早熟收敛判断因子改进引力系数,并为粒子位置公式添加收缩因子,促使种群加快脱离局部最优.对9个不同类型的基准测试函数做仿真实验,结果表明新算法能有效改善种群的早熟问题,具备更好的寻优性能....
Saved in:
Published in | 系统工程与电子技术 Vol. 42; no. 1; pp. 148 - 156 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Chinese |
Published |
火箭军工程大学作战保障学院,陕西西安,710025%火箭军工程大学核工程学院,陕西西安,710025
2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1001-506X |
DOI | 10.3969/j.issn.1001-506X.2020.01.20 |
Cover
Abstract | TP273; 针对引力搜索算法存在的易早熟收敛、易陷入局部最优、搜索精度有待提高等缺陷,提出一种混合方法优化的自适应引力搜索算法(gravitational search algorithm ,GSA ) .首先利用Sobol序列初始化种群,增强算法全局搜索能力;其次引入 Hamming贴进度计算种群成熟度,判断种群是否早熟;然后引入Logistic混沌对种群作混沌搜索,变异已陷入局部最优的粒子位置;最后基于早熟收敛判断因子改进引力系数,并为粒子位置公式添加收缩因子,促使种群加快脱离局部最优.对9个不同类型的基准测试函数做仿真实验,结果表明新算法能有效改善种群的早熟问题,具备更好的寻优性能. |
---|---|
AbstractList | TP273; 针对引力搜索算法存在的易早熟收敛、易陷入局部最优、搜索精度有待提高等缺陷,提出一种混合方法优化的自适应引力搜索算法(gravitational search algorithm ,GSA ) .首先利用Sobol序列初始化种群,增强算法全局搜索能力;其次引入 Hamming贴进度计算种群成熟度,判断种群是否早熟;然后引入Logistic混沌对种群作混沌搜索,变异已陷入局部最优的粒子位置;最后基于早熟收敛判断因子改进引力系数,并为粒子位置公式添加收缩因子,促使种群加快脱离局部最优.对9个不同类型的基准测试函数做仿真实验,结果表明新算法能有效改善种群的早熟问题,具备更好的寻优性能. |
Abstract_FL | In order to overcome the shortcomings of premature convergence ,trapping in local optimum easi‐ly and low er search accuracy of gravitational search algorithm (GSA ) ,an adaptive GSA improved by hybrid methods is proposed .Firstly ,sobol sequence is used to initialize the population and enhance the global search a‐bility .Secondly ,hamming nearness degree is introduced to calculate the population maturity and judge w hether the population is premature .T hirdly ,logistic chaos is introduced to search the population chaotically and update the particle w hich has fallen into the local optimum .Finally ,based on the precocious convergence judgment fac‐tor ,the gravitational coefficient is improved ,and the shrinkage factor is added to the particle position formula to accelerate the population departure from the local optimum .T he simulation results of nine different types of benchmark functions show that the new algorithm can effectively improve the premature convergence problem and has better optimization performance . |
Author | 袁丁 姚敏立 贾维敏 娄奥 |
AuthorAffiliation | 火箭军工程大学作战保障学院,陕西西安,710025%火箭军工程大学核工程学院,陕西西安,710025 |
AuthorAffiliation_xml | – name: 火箭军工程大学作战保障学院,陕西西安,710025%火箭军工程大学核工程学院,陕西西安,710025 |
Author_FL | YAO Minli LOU Ao YUAN Ding JIA Weimin |
Author_FL_xml | – sequence: 1 fullname: LOU Ao – sequence: 2 fullname: YAO Minli – sequence: 3 fullname: JIA Weimin – sequence: 4 fullname: YUAN Ding |
Author_xml | – sequence: 1 fullname: 娄奥 – sequence: 2 fullname: 姚敏立 – sequence: 3 fullname: 贾维敏 – sequence: 4 fullname: 袁丁 |
BookMark | eNrjYmDJy89LZWBQNjTQM7Y0s9TP0sssLs7TMzQwMNQ1NTCL0DMyMDLQMzAE0iwMnHBhDgbe4uLMJANTQ2NzUwNzE04Gg2fbtz-d0PFs2s5nm6c-2TPjac-057NaXrSvetnQ9HTXlKd7pj7tmv1swpznWxY9XzcdqIaHgTUtMac4lRdKczOEurmGOHvo-vi7ezo7-ugWGxqYGugaGiWbWSSZGBqamViYpRmYGBqYpJiZmFokJSeapVoYJ6cYmCcZGlqap1qapBomJxsnGiQmJ6eZJJmnmhsZp1pYGHMzaEHMLU_MS0vMS4_Pyi8tygPaGF9Rkp5cmVKVVQzyo4EhkDAGACebW7Q |
ClassificationCodes | TP273 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3969/j.issn.1001-506X.2020.01.20 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | Adaptive gravitational search algorithm improved by hybrid methods |
EndPage | 156 |
ExternalDocumentID | xtgcydzjs202001020 |
GrantInformation_xml | – fundername: 国家自然科学基金资助课题 funderid: (61179004 ,61179005)资助课题 |
GroupedDBID | -0Y 2B. 4A8 5XA 5XJ 92E 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CUBFJ CW9 PSX TCJ TGP U1G U5S |
ID | FETCH-LOGICAL-s1050-12c68b4116486f04104d6458bca6e83cd07b1197e94e1cc3a0accf4b7e723e883 |
ISSN | 1001-506X |
IngestDate | Thu May 29 04:00:30 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Keywords | chaos gravitational search algorithm (GSA ) 引力搜索算法 低差异序列 nearness degree low‐discrepancy sequence 混沌 贴进度 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1050-12c68b4116486f04104d6458bca6e83cd07b1197e94e1cc3a0accf4b7e723e883 |
PageCount | 9 |
ParticipantIDs | wanfang_journals_xtgcydzjs202001020 |
PublicationCentury | 2000 |
PublicationDate | 2020 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020 |
PublicationDecade | 2020 |
PublicationTitle | 系统工程与电子技术 |
PublicationTitle_FL | Systems Engineering and Electronics |
PublicationYear | 2020 |
Publisher | 火箭军工程大学作战保障学院,陕西西安,710025%火箭军工程大学核工程学院,陕西西安,710025 |
Publisher_xml | – name: 火箭军工程大学作战保障学院,陕西西安,710025%火箭军工程大学核工程学院,陕西西安,710025 |
SSID | ssib051375074 ssib002263377 ssib001102898 ssib057620160 ssib023168126 ssib023646287 ssj0042237 |
Score | 2.240091 |
Snippet | TP273; 针对引力搜索算法存在的易早熟收敛、易陷入局部最优、搜索精度有待提高等缺陷,提出一种混合方法优化的自适应引力搜索算法(gravitational search algorithm ,GSA ) .首先利用Sobol序列初始化种群,增强算法全局搜索能力;其次引入... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 148 |
Title | 混合方法优化的自适应引力搜索算法 |
URI | https://d.wanfangdata.com.cn/periodical/xtgcydzjs202001020 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEG7iBkQP4hPfBGIfN86jn8ee3VmCGC8mkFuY6ZmNeFjB3YDmJCIo4iEHE0U9efTgRSEo-TnuRv-FVb2zMxMTJBpYhqK7uuqrrqW7a6a7mpAbNvdS5qdhMwky0WQ2SGAc7OomjItWpl3fz9zngoU7Yn6J3Vrmy1MNXtu1tDZI5-z6gedK_serUAZ-xVOy_-DZUigUAA3-hSd4GJ6H8jGNBY0k_mJOtUeVwhINhdpVhVRzGjMatahWyKNaWBtLqg1VjMaKKkmNobHGHQ8qQJ7IUM0c0XLNoRWURE6yR3ULm0eMmgAJE1MtS131la5jC2kUOSKiuuNkQhPuGoLqyGEDInaQgHbqTBsVgUzQqxwBSk25A9mxKAefozDD99Q427AN4O44TRFoqlgUgo_iAhXQE946Cxin_Ak6v_5mJPDKfzGKAC4TFR0BuLGzhOus_aYCNobwxhYa4cS3XYcK9Bx6CEo6VLfRH2AFVpXMUKIRV9AqaPSNQhXQpCI4IlEa2DChEl46xY-MU1DjYU8czHwkeLU5EXfdcc9dOFlOmizYNziMZ0B_nDi1WEz546zxf87ToRbazdOoYK5UMIdexCy6hS_3JkJ_NFi1j7P1-33kwlSI3jEyHUjp8waZNu2F23erOACXzbX3CBBjhGF14DrA29r8Ku7ASxREUMUp3A9hIV3FRRCTB5iJcbLEY7Cmdrc2TYAfJ7OFVTf_YpM7F9jrJr3V2hJ28TQ5VcSeM2Y8kJwhU-v3zpKTtYyk54g32t4ebrwYbX0bfdn8sfN2-Gpr992zn88__XrydPj99XBnc_jy_Wjjw-7Xj7uf3wDPebLUiRdb883iUpVmH0Ip3IllhYLh2RdMia7HfI9lgnGV2kTkKrSZJ1PcWpBrlvvWhomXWNtlqcxlEOZKhRdIo_egl18kMzaTeaCZyvNUMuFrlQjdDXiucmmZDLNLZLawd6UYNPsr-514-VBcV8gJpMcvP6-SxuDhWn4NwoFBer1w_m81P7tN |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%B7%B7%E5%90%88%E6%96%B9%E6%B3%95%E4%BC%98%E5%8C%96%E7%9A%84%E8%87%AA%E9%80%82%E5%BA%94%E5%BC%95%E5%8A%9B%E6%90%9C%E7%B4%A2%E7%AE%97%E6%B3%95&rft.jtitle=%E7%B3%BB%E7%BB%9F%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF&rft.au=%E5%A8%84%E5%A5%A5&rft.au=%E5%A7%9A%E6%95%8F%E7%AB%8B&rft.au=%E8%B4%BE%E7%BB%B4%E6%95%8F&rft.au=%E8%A2%81%E4%B8%81&rft.date=2020&rft.pub=%E7%81%AB%E7%AE%AD%E5%86%9B%E5%B7%A5%E7%A8%8B%E5%A4%A7%E5%AD%A6%E4%BD%9C%E6%88%98%E4%BF%9D%E9%9A%9C%E5%AD%A6%E9%99%A2%2C%E9%99%95%E8%A5%BF%E8%A5%BF%E5%AE%89%2C710025%25%E7%81%AB%E7%AE%AD%E5%86%9B%E5%B7%A5%E7%A8%8B%E5%A4%A7%E5%AD%A6%E6%A0%B8%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E9%99%95%E8%A5%BF%E8%A5%BF%E5%AE%89%2C710025&rft.issn=1001-506X&rft.volume=42&rft.issue=1&rft.spage=148&rft.epage=156&rft_id=info:doi/10.3969%2Fj.issn.1001-506X.2020.01.20&rft.externalDocID=xtgcydzjs202001020 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxtgcydzjs%2Fxtgcydzjs.jpg |