混合方法优化的自适应引力搜索算法

TP273; 针对引力搜索算法存在的易早熟收敛、易陷入局部最优、搜索精度有待提高等缺陷,提出一种混合方法优化的自适应引力搜索算法(gravitational search algorithm ,GSA ) .首先利用Sobol序列初始化种群,增强算法全局搜索能力;其次引入 Hamming贴进度计算种群成熟度,判断种群是否早熟;然后引入Logistic混沌对种群作混沌搜索,变异已陷入局部最优的粒子位置;最后基于早熟收敛判断因子改进引力系数,并为粒子位置公式添加收缩因子,促使种群加快脱离局部最优.对9个不同类型的基准测试函数做仿真实验,结果表明新算法能有效改善种群的早熟问题,具备更好的寻优性能....

Full description

Saved in:
Bibliographic Details
Published in系统工程与电子技术 Vol. 42; no. 1; pp. 148 - 156
Main Authors 娄奥, 姚敏立, 贾维敏, 袁丁
Format Journal Article
LanguageChinese
Published 火箭军工程大学作战保障学院,陕西西安,710025%火箭军工程大学核工程学院,陕西西安,710025 2020
Subjects
Online AccessGet full text
ISSN1001-506X
DOI10.3969/j.issn.1001-506X.2020.01.20

Cover

Abstract TP273; 针对引力搜索算法存在的易早熟收敛、易陷入局部最优、搜索精度有待提高等缺陷,提出一种混合方法优化的自适应引力搜索算法(gravitational search algorithm ,GSA ) .首先利用Sobol序列初始化种群,增强算法全局搜索能力;其次引入 Hamming贴进度计算种群成熟度,判断种群是否早熟;然后引入Logistic混沌对种群作混沌搜索,变异已陷入局部最优的粒子位置;最后基于早熟收敛判断因子改进引力系数,并为粒子位置公式添加收缩因子,促使种群加快脱离局部最优.对9个不同类型的基准测试函数做仿真实验,结果表明新算法能有效改善种群的早熟问题,具备更好的寻优性能.
AbstractList TP273; 针对引力搜索算法存在的易早熟收敛、易陷入局部最优、搜索精度有待提高等缺陷,提出一种混合方法优化的自适应引力搜索算法(gravitational search algorithm ,GSA ) .首先利用Sobol序列初始化种群,增强算法全局搜索能力;其次引入 Hamming贴进度计算种群成熟度,判断种群是否早熟;然后引入Logistic混沌对种群作混沌搜索,变异已陷入局部最优的粒子位置;最后基于早熟收敛判断因子改进引力系数,并为粒子位置公式添加收缩因子,促使种群加快脱离局部最优.对9个不同类型的基准测试函数做仿真实验,结果表明新算法能有效改善种群的早熟问题,具备更好的寻优性能.
Abstract_FL In order to overcome the shortcomings of premature convergence ,trapping in local optimum easi‐ly and low er search accuracy of gravitational search algorithm (GSA ) ,an adaptive GSA improved by hybrid methods is proposed .Firstly ,sobol sequence is used to initialize the population and enhance the global search a‐bility .Secondly ,hamming nearness degree is introduced to calculate the population maturity and judge w hether the population is premature .T hirdly ,logistic chaos is introduced to search the population chaotically and update the particle w hich has fallen into the local optimum .Finally ,based on the precocious convergence judgment fac‐tor ,the gravitational coefficient is improved ,and the shrinkage factor is added to the particle position formula to accelerate the population departure from the local optimum .T he simulation results of nine different types of benchmark functions show that the new algorithm can effectively improve the premature convergence problem and has better optimization performance .
Author 袁丁
姚敏立
贾维敏
娄奥
AuthorAffiliation 火箭军工程大学作战保障学院,陕西西安,710025%火箭军工程大学核工程学院,陕西西安,710025
AuthorAffiliation_xml – name: 火箭军工程大学作战保障学院,陕西西安,710025%火箭军工程大学核工程学院,陕西西安,710025
Author_FL YAO Minli
LOU Ao
YUAN Ding
JIA Weimin
Author_FL_xml – sequence: 1
  fullname: LOU Ao
– sequence: 2
  fullname: YAO Minli
– sequence: 3
  fullname: JIA Weimin
– sequence: 4
  fullname: YUAN Ding
Author_xml – sequence: 1
  fullname: 娄奥
– sequence: 2
  fullname: 姚敏立
– sequence: 3
  fullname: 贾维敏
– sequence: 4
  fullname: 袁丁
BookMark eNrjYmDJy89LZWBQNjTQM7Y0s9TP0sssLs7TMzQwMNQ1NTCL0DMyMDLQMzAE0iwMnHBhDgbe4uLMJANTQ2NzUwNzE04Gg2fbtz-d0PFs2s5nm6c-2TPjac-057NaXrSvetnQ9HTXlKd7pj7tmv1swpznWxY9XzcdqIaHgTUtMac4lRdKczOEurmGOHvo-vi7ezo7-ugWGxqYGugaGiWbWSSZGBqamViYpRmYGBqYpJiZmFokJSeapVoYJ6cYmCcZGlqap1qapBomJxsnGiQmJ6eZJJmnmhsZp1pYGHMzaEHMLU_MS0vMS4_Pyi8tygPaGF9Rkp5cmVKVVQzyo4EhkDAGACebW7Q
ClassificationCodes TP273
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-506X.2020.01.20
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Adaptive gravitational search algorithm improved by hybrid methods
EndPage 156
ExternalDocumentID xtgcydzjs202001020
GrantInformation_xml – fundername: 国家自然科学基金资助课题
  funderid: (61179004 ,61179005)资助课题
GroupedDBID -0Y
2B.
4A8
5XA
5XJ
92E
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
PSX
TCJ
TGP
U1G
U5S
ID FETCH-LOGICAL-s1050-12c68b4116486f04104d6458bca6e83cd07b1197e94e1cc3a0accf4b7e723e883
ISSN 1001-506X
IngestDate Thu May 29 04:00:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords chaos
gravitational search algorithm (GSA )
引力搜索算法
低差异序列
nearness degree
low‐discrepancy sequence
混沌
贴进度
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1050-12c68b4116486f04104d6458bca6e83cd07b1197e94e1cc3a0accf4b7e723e883
PageCount 9
ParticipantIDs wanfang_journals_xtgcydzjs202001020
PublicationCentury 2000
PublicationDate 2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationTitle 系统工程与电子技术
PublicationTitle_FL Systems Engineering and Electronics
PublicationYear 2020
Publisher 火箭军工程大学作战保障学院,陕西西安,710025%火箭军工程大学核工程学院,陕西西安,710025
Publisher_xml – name: 火箭军工程大学作战保障学院,陕西西安,710025%火箭军工程大学核工程学院,陕西西安,710025
SSID ssib051375074
ssib002263377
ssib001102898
ssib057620160
ssib023168126
ssib023646287
ssj0042237
Score 2.240091
Snippet TP273; 针对引力搜索算法存在的易早熟收敛、易陷入局部最优、搜索精度有待提高等缺陷,提出一种混合方法优化的自适应引力搜索算法(gravitational search algorithm ,GSA ) .首先利用Sobol序列初始化种群,增强算法全局搜索能力;其次引入...
SourceID wanfang
SourceType Aggregation Database
StartPage 148
Title 混合方法优化的自适应引力搜索算法
URI https://d.wanfangdata.com.cn/periodical/xtgcydzjs202001020
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEG7iBkQP4hPfBGIfN86jn8ee3VmCGC8mkFuY6ZmNeFjB3YDmJCIo4iEHE0U9efTgRSEo-TnuRv-FVb2zMxMTJBpYhqK7uuqrrqW7a6a7mpAbNvdS5qdhMwky0WQ2SGAc7OomjItWpl3fz9zngoU7Yn6J3Vrmy1MNXtu1tDZI5-z6gedK_serUAZ-xVOy_-DZUigUAA3-hSd4GJ6H8jGNBY0k_mJOtUeVwhINhdpVhVRzGjMatahWyKNaWBtLqg1VjMaKKkmNobHGHQ8qQJ7IUM0c0XLNoRWURE6yR3ULm0eMmgAJE1MtS131la5jC2kUOSKiuuNkQhPuGoLqyGEDInaQgHbqTBsVgUzQqxwBSk25A9mxKAefozDD99Q427AN4O44TRFoqlgUgo_iAhXQE946Cxin_Ak6v_5mJPDKfzGKAC4TFR0BuLGzhOus_aYCNobwxhYa4cS3XYcK9Bx6CEo6VLfRH2AFVpXMUKIRV9AqaPSNQhXQpCI4IlEa2DChEl46xY-MU1DjYU8czHwkeLU5EXfdcc9dOFlOmizYNziMZ0B_nDi1WEz546zxf87ToRbazdOoYK5UMIdexCy6hS_3JkJ_NFi1j7P1-33kwlSI3jEyHUjp8waZNu2F23erOACXzbX3CBBjhGF14DrA29r8Ku7ASxREUMUp3A9hIV3FRRCTB5iJcbLEY7Cmdrc2TYAfJ7OFVTf_YpM7F9jrJr3V2hJ28TQ5VcSeM2Y8kJwhU-v3zpKTtYyk54g32t4ebrwYbX0bfdn8sfN2-Gpr992zn88__XrydPj99XBnc_jy_Wjjw-7Xj7uf3wDPebLUiRdb883iUpVmH0Ip3IllhYLh2RdMia7HfI9lgnGV2kTkKrSZJ1PcWpBrlvvWhomXWNtlqcxlEOZKhRdIo_egl18kMzaTeaCZyvNUMuFrlQjdDXiucmmZDLNLZLawd6UYNPsr-514-VBcV8gJpMcvP6-SxuDhWn4NwoFBer1w_m81P7tN
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%B7%B7%E5%90%88%E6%96%B9%E6%B3%95%E4%BC%98%E5%8C%96%E7%9A%84%E8%87%AA%E9%80%82%E5%BA%94%E5%BC%95%E5%8A%9B%E6%90%9C%E7%B4%A2%E7%AE%97%E6%B3%95&rft.jtitle=%E7%B3%BB%E7%BB%9F%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF&rft.au=%E5%A8%84%E5%A5%A5&rft.au=%E5%A7%9A%E6%95%8F%E7%AB%8B&rft.au=%E8%B4%BE%E7%BB%B4%E6%95%8F&rft.au=%E8%A2%81%E4%B8%81&rft.date=2020&rft.pub=%E7%81%AB%E7%AE%AD%E5%86%9B%E5%B7%A5%E7%A8%8B%E5%A4%A7%E5%AD%A6%E4%BD%9C%E6%88%98%E4%BF%9D%E9%9A%9C%E5%AD%A6%E9%99%A2%2C%E9%99%95%E8%A5%BF%E8%A5%BF%E5%AE%89%2C710025%25%E7%81%AB%E7%AE%AD%E5%86%9B%E5%B7%A5%E7%A8%8B%E5%A4%A7%E5%AD%A6%E6%A0%B8%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E9%99%95%E8%A5%BF%E8%A5%BF%E5%AE%89%2C710025&rft.issn=1001-506X&rft.volume=42&rft.issue=1&rft.spage=148&rft.epage=156&rft_id=info:doi/10.3969%2Fj.issn.1001-506X.2020.01.20&rft.externalDocID=xtgcydzjs202001020
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxtgcydzjs%2Fxtgcydzjs.jpg