人工智能在乳房外Paget病病理诊断及鉴别中的应用

R319%R730.4%R739.5; 目的 建立乳房外Paget病(extramammary Paget's disease,EMPD)组织病理诊断的人工智能(artificial intelligence,AI)诊断模型,并评价其对EMPD诊断及鉴别诊断的效能.方法 收集2003年9月至2023年2月于陆军军医大学第一附属医院皮肤科就诊并行皮肤组织活检术,且病理明确诊断为EMPD、Bowen病、皮肤鳞状细胞癌(squamous cell carcinoma,SCC)以及表皮增生肥厚为主要病理特征的非肿瘤性皮肤病患者的病理资料.以EMPD为主要研究对象,与Bowen病、SCC以及非...

Full description

Saved in:
Bibliographic Details
Published in陆军军医大学学报 Vol. 46; no. 16; pp. 1897 - 1905
Main Authors 朱一维, 吴哲, 陈星材, 粘永健, 罗娜, 张恋, 吴毅, 翟志芳
Format Journal Article
LanguageChinese
Published 400038 重庆,陆军军医大学(第三军医大学):第一附属医院皮肤科%400038 重庆,陆军军医大学(第三军医大学):生物医学工程与影像医学系数字医学教研室%401120 重庆,重庆医科大学附属第三医院皮肤科 2024
Subjects
Online AccessGet full text
ISSN2097-0927
DOI10.16016/j.2097-0927.202401014

Cover

Loading…
Abstract R319%R730.4%R739.5; 目的 建立乳房外Paget病(extramammary Paget's disease,EMPD)组织病理诊断的人工智能(artificial intelligence,AI)诊断模型,并评价其对EMPD诊断及鉴别诊断的效能.方法 收集2003年9月至2023年2月于陆军军医大学第一附属医院皮肤科就诊并行皮肤组织活检术,且病理明确诊断为EMPD、Bowen病、皮肤鳞状细胞癌(squamous cell carcinoma,SCC)以及表皮增生肥厚为主要病理特征的非肿瘤性皮肤病患者的病理资料.以EMPD为主要研究对象,与Bowen病、SCC以及非肿瘤性皮肤病病理图像进行鉴别,通过ResNet101、DenseNet121深度学习神经网络对4种疾病的组织病理进行分类诊断并评价模型效能.结果 ResNet101诊断模型诊断EMPD、Bowen病、SCC及非肿瘤性皮肤病的20倍组织病理图像的AUC值分别为0.97、0.98、1.00、0.96,准确度为(0.925±0.011);40倍组织病理图像AUC 值分别为 1.00、0.99、1.00、0.97,准确度为(0.943±0.017).DenseNet121 诊断模型诊断 EMPD、Bowen病、SCC及非肿瘤性皮肤病的20倍组织病理图像的AUC值分别为0.98、0.95、0.99、1.00,准确度为(0.912±0.034);40倍组织病理图像AUC值分别为0.99、0.96、1.00、1.00,准确度为(0.971±0.012).表示分类诊断模型能够将EMPD与Bowen病、SCC及非肿瘤性皮肤病等的低倍组织病理图像进行有效区分.ResNet101计算量为786.6 M、参数量为4.5 M,DensNet121计算量为289.7 M、参数量为0.8 M.结论 本研究建立的组织病理图像人工智能诊断模型对EMPD的诊断及鉴别诊断具有较高效能,并推荐DenseNet121为皮肤病理图片的诊断模型.
AbstractList R319%R730.4%R739.5; 目的 建立乳房外Paget病(extramammary Paget's disease,EMPD)组织病理诊断的人工智能(artificial intelligence,AI)诊断模型,并评价其对EMPD诊断及鉴别诊断的效能.方法 收集2003年9月至2023年2月于陆军军医大学第一附属医院皮肤科就诊并行皮肤组织活检术,且病理明确诊断为EMPD、Bowen病、皮肤鳞状细胞癌(squamous cell carcinoma,SCC)以及表皮增生肥厚为主要病理特征的非肿瘤性皮肤病患者的病理资料.以EMPD为主要研究对象,与Bowen病、SCC以及非肿瘤性皮肤病病理图像进行鉴别,通过ResNet101、DenseNet121深度学习神经网络对4种疾病的组织病理进行分类诊断并评价模型效能.结果 ResNet101诊断模型诊断EMPD、Bowen病、SCC及非肿瘤性皮肤病的20倍组织病理图像的AUC值分别为0.97、0.98、1.00、0.96,准确度为(0.925±0.011);40倍组织病理图像AUC 值分别为 1.00、0.99、1.00、0.97,准确度为(0.943±0.017).DenseNet121 诊断模型诊断 EMPD、Bowen病、SCC及非肿瘤性皮肤病的20倍组织病理图像的AUC值分别为0.98、0.95、0.99、1.00,准确度为(0.912±0.034);40倍组织病理图像AUC值分别为0.99、0.96、1.00、1.00,准确度为(0.971±0.012).表示分类诊断模型能够将EMPD与Bowen病、SCC及非肿瘤性皮肤病等的低倍组织病理图像进行有效区分.ResNet101计算量为786.6 M、参数量为4.5 M,DensNet121计算量为289.7 M、参数量为0.8 M.结论 本研究建立的组织病理图像人工智能诊断模型对EMPD的诊断及鉴别诊断具有较高效能,并推荐DenseNet121为皮肤病理图片的诊断模型.
Abstract_FL Objective To establish an artificial intelligence(AI)diagnostic model for the histopathologic diagnosis of extramammary Paget's disease(EMPD)and to evaluate its efficiency for the diagnosis and differential diagnosis of EMPD.Methods All non-tumor skin disease patients who underwent skin tissue biopsy in Department of Dermatology of First Affiliated Hospital of Army Medical University from September 2003 to February 2023 were recruited,and their pathological data were collected,including EMPD,Bowen's disease(BD),squamous cell carcinoma(SCC),and epidermal hyperplasia and hypertrophy.With EMPD as the main research subject,the histopathological images of BD,SCC,and non-tumor skin diseases were included in the study.The histopathological data of 4 types of diseases was classified and diagnosed by ResNet101 and DenseNet121 deep learning neural networks,and the performance of these models was evaluated.Results The AUC values of the ResNet101 diagnostic model for the diagnosis of EMPD,BD,SCC and non-tumor skin diseases on the images at x20 magnification were 0.97,0.98,1.00 and 0.96,respectively,with an accuracy of 0.925±0.011,while the AUC values on the images at x40 magnification were 1.00,0.99,1.00 and 0.97,respectively,with an accuracy of 0.943±0.017.The AUC values of the DenseNet121 diagnostic model for the diagnosis of 4 diseases on the images at x20 magnification were 0.98,0.95,0.99 and 1.00,respectively,with an accuracy of 0.912±0.034,while the AUC values on the images at x40 magnification were 0.99,0.96,1.00 and 1.00,respectively,with an accuracy of 0.971±0.012.Our results indicated that the histopathologic diagnostic model could effectively differentiate EMPD from BD,SCC and non-tumor skin diseases at low power magnification.The FLPOs of ResNet101 was 786.6 M,and the parameter was 4.5 M;The FLPOs of DensNet121 was 289.7 M,and the parameter was 0.8M.Conclusion Our AI diagnostic model is of good effectiveness in the diagnosis and differential diagnosis of EMPD.DenseNet121 is recommended as the dermatopathological diagnostic model of this study.
Author 张恋
吴哲
粘永健
翟志芳
朱一维
陈星材
罗娜
吴毅
AuthorAffiliation 400038 重庆,陆军军医大学(第三军医大学):第一附属医院皮肤科%400038 重庆,陆军军医大学(第三军医大学):生物医学工程与影像医学系数字医学教研室%401120 重庆,重庆医科大学附属第三医院皮肤科
AuthorAffiliation_xml – name: 400038 重庆,陆军军医大学(第三军医大学):第一附属医院皮肤科%400038 重庆,陆军军医大学(第三军医大学):生物医学工程与影像医学系数字医学教研室%401120 重庆,重庆医科大学附属第三医院皮肤科
Author_FL ZHAI Zhifang
NIAN Yongjian
WU Yi
CHEN Xingcai
WU Zhe
ZHU Yiwei
ZHANG Lian
LUO Na
Author_FL_xml – sequence: 1
  fullname: ZHU Yiwei
– sequence: 2
  fullname: WU Zhe
– sequence: 3
  fullname: CHEN Xingcai
– sequence: 4
  fullname: NIAN Yongjian
– sequence: 5
  fullname: LUO Na
– sequence: 6
  fullname: ZHANG Lian
– sequence: 7
  fullname: WU Yi
– sequence: 8
  fullname: ZHAI Zhifang
Author_xml – sequence: 1
  fullname: 朱一维
– sequence: 2
  fullname: 吴哲
– sequence: 3
  fullname: 陈星材
– sequence: 4
  fullname: 粘永健
– sequence: 5
  fullname: 罗娜
– sequence: 6
  fullname: 张恋
– sequence: 7
  fullname: 吴毅
– sequence: 8
  fullname: 翟志芳
BookMark eNo9UEtLw0AY3EMFa-1f8O4h9dtnssdSfEFBD3oum81uMUgKRrGefVB70UOpKB4VClI8KKgB8c8kTf0XpijCwAxzmGFmAZWiTmQQWsJQwwKwWAlrBKTrgCRuoQgDDJiVUPnfnUfVON7zgWPqCopZGdXTJMneHie3yfT0M7sfpR8vk95X9jDcVm1zmN-cz3B9MX3uT4bj7Kr_ffma9Z7S93F-d5Ylg3wwWkRzVu3HpvrHFbS7trrT2HCaW-ubjXrTiTEw6VihKWgDwjdcS-sRibW1xnAiGGjtcp8zFWjjsUAENuDCw4RT8CXVTCuGaQUt_-Yeq8iqqN0KO0cHUdHYCuLwJOh2_dnk4giQ9Afbj2UK
ClassificationCodes R319%R730.4%R739.5
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16016/j.2097-0927.202401014
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Application of artificial intelligence in histopathologic diagnosis and differentiation of extramammary Paget's disease
EndPage 1905
ExternalDocumentID dsjydxxb202416009
GroupedDBID -SE
-S~
2B.
4A8
5XA
5XF
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CAJEE
CQIGP
GROUPED_DOAJ
PB1
PB7
PSX
Q--
TCJ
TGQ
U1G
U5O
ID FETCH-LOGICAL-s1049-f6c30ce06be5c9f8291cffee52640cc75b54adce84d6dfd56812530b93c4ca413
ISSN 2097-0927
IngestDate Thu May 29 04:18:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords histopathologic diagnosis
人工智能
病理诊断
诊断模型
diagnostic model
artificial intelligence
乳房外Paget病
Paget's disease,extramammary
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1049-f6c30ce06be5c9f8291cffee52640cc75b54adce84d6dfd56812530b93c4ca413
PageCount 9
ParticipantIDs wanfang_journals_dsjydxxb202416009
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle 陆军军医大学学报
PublicationTitle_FL Journal of Army Medical University
PublicationYear 2024
Publisher 400038 重庆,陆军军医大学(第三军医大学):第一附属医院皮肤科%400038 重庆,陆军军医大学(第三军医大学):生物医学工程与影像医学系数字医学教研室%401120 重庆,重庆医科大学附属第三医院皮肤科
Publisher_xml – name: 400038 重庆,陆军军医大学(第三军医大学):第一附属医院皮肤科%400038 重庆,陆军军医大学(第三军医大学):生物医学工程与影像医学系数字医学教研室%401120 重庆,重庆医科大学附属第三医院皮肤科
SSID ssib051376314
ssj0002910474
Score 2.3405704
Snippet R319%R730.4%R739.5; 目的 建立乳房外Paget病(extramammary Paget's disease,EMPD)组织病理诊断的人工智能(artificial intelligence,AI)诊断模型,并评价其对EMPD诊断及鉴别诊断的效能.方法...
SourceID wanfang
SourceType Aggregation Database
StartPage 1897
Title 人工智能在乳房外Paget病病理诊断及鉴别中的应用
URI https://d.wanfangdata.com.cn/periodical/dsjydxxb202416009
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzR1NaxQxdCjtxYsoKn5TxJxkS3Y2ySTHzO4sRVA8tNBbmU-lhxXsFtpe_aD2oodSUTwqFKR4UFAXxH_iqdvWf-F7mczO1I6w9iQMQ3hfeXkvb-Ylk2Qc56aLWUPo4aIwyhp4pHkjjFopOCSMIuXxmFPcKHznrpidZ7cX-MLE1M_KqqWVfjQTr9fuKzmJVwEGfsVdsv_g2ZFQAEAZ_At38DDcx_IxCRjxNV4BJ75HNCeBIEoZiCSyRfwOolSbaGmIAdVCGimJ30WUZkSJe_BQ6ZPAI8ojkh8tUCIFCtNdIrURL4g2UmUOUUSCVGYgQOabeqShAXZNpEGBRooZCANdqikxSgCVsRaOd-UfLbSJ71tNtWcKHaJFpSBQDc2LrmN0BKamVURSrBZk-Kwk4diwXGkFVnJLTK6MNFIkUV1T6BBFSxKQ5iISMD7FKlDNZqGCnUJxy8lTZr6M3jKmArt2rD3wm1b7hK13Jaqh23jZZqrxGBV0rmO8tFAj91WTqKAixKC0a_2pA9O3XJSMcgAIb0P-XzYSOht60ENGrY6yFL3Ixo2HISKL3itN-yF6sBtxjCTZrWP3MJ4QAipx7A05Snl1xIYG7IB1URMOHK0JyqP5YEhC_26-P4Cl9MIDNRFy3KW11hzXyWXO4FI8XFnlx20UCY6d47cP8mq60pT54nib-sLggNemVSKf4luaGcmfwTgyP_ouE8nR8t5keWktWV2NkAZ4cX_1lAvD-GZlygve97yJ2Y1dxYGZs6vw4BhcCDSqxx7qIPI1uTXVm82WvSzs3a-MC-bOOKftgH5a50_ns87E-oNzjt4bDIZf3u-_Hhw-_j58u7P37dP-xo_hu23zpD149RSvl88OP27ub-8OX2z-ev55uPFh7-vuwZsnw8HWwdbOeWe-G8y1Zxv2ZzWNZVBaNTIRt2icUhGlPFaZhLbEWZamHEacNI49HnEWJnEqWSKSLDHnPvIWjVQrZnEIQ4kLzmTvYS-96EyzTMU0EipVYcqYCyR4LCFj3FNJJGR6yblhm7xoX0bLi8dMfnkcoivOKSznU8pXncn-o5X0Ggyy-tF146nfAeIDCA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E5%9C%A8%E4%B9%B3%E6%88%BF%E5%A4%96Paget%E7%97%85%E7%97%85%E7%90%86%E8%AF%8A%E6%96%AD%E5%8F%8A%E9%89%B4%E5%88%AB%E4%B8%AD%E7%9A%84%E5%BA%94%E7%94%A8&rft.jtitle=%E9%99%86%E5%86%9B%E5%86%9B%E5%8C%BB%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E6%9C%B1%E4%B8%80%E7%BB%B4&rft.au=%E5%90%B4%E5%93%B2&rft.au=%E9%99%88%E6%98%9F%E6%9D%90&rft.au=%E7%B2%98%E6%B0%B8%E5%81%A5&rft.date=2024&rft.pub=400038+%E9%87%8D%E5%BA%86%2C%E9%99%86%E5%86%9B%E5%86%9B%E5%8C%BB%E5%A4%A7%E5%AD%A6%28%E7%AC%AC%E4%B8%89%E5%86%9B%E5%8C%BB%E5%A4%A7%E5%AD%A6%29%3A%E7%AC%AC%E4%B8%80%E9%99%84%E5%B1%9E%E5%8C%BB%E9%99%A2%E7%9A%AE%E8%82%A4%E7%A7%91%25400038+%E9%87%8D%E5%BA%86%2C%E9%99%86%E5%86%9B%E5%86%9B%E5%8C%BB%E5%A4%A7%E5%AD%A6%28%E7%AC%AC%E4%B8%89%E5%86%9B%E5%8C%BB%E5%A4%A7%E5%AD%A6%29%3A%E7%94%9F%E7%89%A9%E5%8C%BB%E5%AD%A6%E5%B7%A5%E7%A8%8B%E4%B8%8E%E5%BD%B1%E5%83%8F%E5%8C%BB%E5%AD%A6%E7%B3%BB%E6%95%B0%E5%AD%97%E5%8C%BB%E5%AD%A6%E6%95%99%E7%A0%94%E5%AE%A4%25401120+%E9%87%8D%E5%BA%86%2C%E9%87%8D%E5%BA%86%E5%8C%BB%E7%A7%91%E5%A4%A7%E5%AD%A6%E9%99%84%E5%B1%9E%E7%AC%AC%E4%B8%89%E5%8C%BB%E9%99%A2%E7%9A%AE%E8%82%A4%E7%A7%91&rft.issn=2097-0927&rft.volume=46&rft.issue=16&rft.spage=1897&rft.epage=1905&rft_id=info:doi/10.16016%2Fj.2097-0927.202401014&rft.externalDocID=dsjydxxb202416009
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdsjydxxb%2Fdsjydxxb.jpg