基于高光谱成像技术的番茄叶片含水量检测研究

S641.2; [目的]为快速检测叶片含水量,本研究探索及时监测番茄植株生长状况的在线监测模型.[方法]利用高光谱成像技术,提取195个叶片样本的平均光谱反射率.通过异常值剔除、样本集划分、5种预处理方法对原始光谱进行预处理和优化,采用连续投影算法(successive projections algorithm,SPA)、无信息变量消除变换法(uninformation variable elimination,UVE)、迭代保留信息变量法(iterative retained information variable,IRIV)和遗传偏最小二乘算法(genetic partial-leas...

Full description

Saved in:
Bibliographic Details
Published in南京农业大学学报 Vol. 47; no. 6; pp. 1221 - 1229
Main Authors 马玲, 李亚娇, 张祎洋, 王静, 马燕, 马思艳, 吴龙国
Format Journal Article
LanguageChinese
Published 宁夏大学葡萄酒与园艺学院,宁夏银川 750021%宁夏大学葡萄酒与园艺学院,宁夏银川 750021 2024
宁夏现代设施园艺工程技术研究中心,宁夏银川 750021
Subjects
Online AccessGet full text
ISSN1000-2030
DOI10.7685/jnau.202311037

Cover

Abstract S641.2; [目的]为快速检测叶片含水量,本研究探索及时监测番茄植株生长状况的在线监测模型.[方法]利用高光谱成像技术,提取195个叶片样本的平均光谱反射率.通过异常值剔除、样本集划分、5种预处理方法对原始光谱进行预处理和优化,采用连续投影算法(successive projections algorithm,SPA)、无信息变量消除变换法(uninformation variable elimination,UVE)、迭代保留信息变量法(iterative retained information variable,IRIV)和遗传偏最小二乘算法(genetic partial-least-squares algorithm,GAPLS)提取特征波长,并建立偏最小二乘回归(partial-least-squares regression,PLSR)模型.基于优选的特征波长,建立PLSR、多元线性回归(multiple linear regression,MLR)以及主成分回归(principal component regression,PCR)模型和卷积神经网络模型(convolutional neural network,CNN).[结果]优选基线校准-正交信号校正法(baseline-orthogonal signal correction,Baseline-OSC)对叶片含水量进行预处理;IRIV法提取的特征波长建立的叶片含水量定量预测模型效果最优,Rc2为0.489,Rp2为 0.466;基于 IRIV-CNN 建立的叶片含水量模型效果好(Rc2=0.668,RMSEC=0.019;Rp2=0.424,RMSEP=0.033).[结论]利用高光谱成像技术结合Baseline-OSC-IRIV-CNN模型预测番茄叶片含水量是可行的.
AbstractList S641.2; [目的]为快速检测叶片含水量,本研究探索及时监测番茄植株生长状况的在线监测模型.[方法]利用高光谱成像技术,提取195个叶片样本的平均光谱反射率.通过异常值剔除、样本集划分、5种预处理方法对原始光谱进行预处理和优化,采用连续投影算法(successive projections algorithm,SPA)、无信息变量消除变换法(uninformation variable elimination,UVE)、迭代保留信息变量法(iterative retained information variable,IRIV)和遗传偏最小二乘算法(genetic partial-least-squares algorithm,GAPLS)提取特征波长,并建立偏最小二乘回归(partial-least-squares regression,PLSR)模型.基于优选的特征波长,建立PLSR、多元线性回归(multiple linear regression,MLR)以及主成分回归(principal component regression,PCR)模型和卷积神经网络模型(convolutional neural network,CNN).[结果]优选基线校准-正交信号校正法(baseline-orthogonal signal correction,Baseline-OSC)对叶片含水量进行预处理;IRIV法提取的特征波长建立的叶片含水量定量预测模型效果最优,Rc2为0.489,Rp2为 0.466;基于 IRIV-CNN 建立的叶片含水量模型效果好(Rc2=0.668,RMSEC=0.019;Rp2=0.424,RMSEP=0.033).[结论]利用高光谱成像技术结合Baseline-OSC-IRIV-CNN模型预测番茄叶片含水量是可行的.
Abstract_FL [Objectives]In order to quickly detect leaf water content,an online monitoring model was explored to monitor the growth of tomato plants in a timely manner.[Methods]In this experiment,the average spectral reflectance of 195 leaf samples was extracted using hyperspectral imaging.The raw spectra were preprocessed and optimised by outlier removal,sample set division,five preprocessing methods,successive projections algorithm(SPA),uninformation variable elimination transformation(UVE),iterative retained information variable(IRIV)and genetic partial-least-squares algorithm(GAPLS)were used to extract the feature wavelengths,and the partial-least-squares regression(PLSR)model was developed.PLSR,multiple linear regression(MLR),principal component regression(PCR)and convolutional neural network(CNN)models were built based on the preferred feature wavelengths.[Results]The results showed that the Baseline-orthogonal signal correction(Baseline-OSC)method was preferred for pre-processing of leaf water content;the quantitative leaf water content prediction model established by the feature wavelengths extracted from the IRIV method had an optimal Rc2 of 0.489 and Rp2 of 0.466;the leaf water content model based on IRIV-PCR was good(Rc2=0.668,RMSEC=0.019;Rp2=0.424,RMSEP=0.033).[Conclusions]It is feasible to predict tomato leaf water content using hyperspectral imaging combined with Baseline-OSC-IRIV-CNN model.
Author 王静
马玲
李亚娇
吴龙国
张祎洋
马燕
马思艳
AuthorAffiliation 宁夏大学葡萄酒与园艺学院,宁夏银川 750021%宁夏大学葡萄酒与园艺学院,宁夏银川 750021;宁夏现代设施园艺工程技术研究中心,宁夏银川 750021
AuthorAffiliation_xml – name: 宁夏大学葡萄酒与园艺学院,宁夏银川 750021%宁夏大学葡萄酒与园艺学院,宁夏银川 750021;宁夏现代设施园艺工程技术研究中心,宁夏银川 750021
Author_FL MA Ling
MA Yan
ZHANG Yiyang
WU Longguo
WANG Jing
MA Siyan
LI Yajiao
Author_FL_xml – sequence: 1
  fullname: MA Ling
– sequence: 2
  fullname: LI Yajiao
– sequence: 3
  fullname: ZHANG Yiyang
– sequence: 4
  fullname: WANG Jing
– sequence: 5
  fullname: MA Yan
– sequence: 6
  fullname: MA Siyan
– sequence: 7
  fullname: WU Longguo
Author_xml – sequence: 1
  fullname: 马玲
– sequence: 2
  fullname: 李亚娇
– sequence: 3
  fullname: 张祎洋
– sequence: 4
  fullname: 王静
– sequence: 5
  fullname: 马燕
– sequence: 6
  fullname: 马思艳
– sequence: 7
  fullname: 吴龙国
BookMark eNotj09LAkEcQOdgkJnXvkOHtd_83ZlThPQPhC51lt3Z2WiJEVokuwkZZkV6KIgICjqVhwzKg5-nndVvkVCnd3uPt4QKtmENQisYKr6QfC2xQbNCgFCMgfoFVMQA4BGgsIjKaXoUAsfUBw6yiNaz58nP5HY2fMguetPRp7scZOd9d9V2Tx_5Yye_f5_edLL-OO91s8HQjb5m3b57bbvv6_zlLn8bL6OFODhOTfmfJXSwtblf3fFqe9u71Y2al2JgypNU8lArIgwAp8RgHINQOgoiQrTmmEdUapCx4Uz5RAgitaLMKMaNEixitIRW_7yngY0De1hPGs0TOy_WbWLPolYrnA8zEIAV_QVdkmG4
ClassificationCodes S641.2
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.7685/jnau.202311037
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitle_FL Detection of water content in tomato leaves based on hyperspectral imaging technology
EndPage 1229
ExternalDocumentID njnydxxb202406019
GrantInformation_xml – fundername: (宁夏高等学校自然科学项目); (宁夏重点研发计划项目); (国家重点研发计划)
  funderid: (宁夏高等学校自然科学项目); (宁夏重点研发计划项目); (国家重点研发计划)
GroupedDBID -04
123
2B.
4A8
92G
92I
93N
ABDBF
ABJNI
ACGFS
ACUHS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CW9
DYU
EOJEC
ESX
OBODZ
OZF
PSX
TCJ
TGD
U1G
U5N
UY8
ID FETCH-LOGICAL-s1049-8385bc926e00532e11f069cdad22cc515d38c08fe549726628c934e945e964d43
ISSN 1000-2030
IngestDate Thu May 29 04:08:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords detection
番茄
检测
hyperspectral
water content
叶片
tomato
leaf
含水量
高光谱
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1049-8385bc926e00532e11f069cdad22cc515d38c08fe549726628c934e945e964d43
PageCount 9
ParticipantIDs wanfang_journals_njnydxxb202406019
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle 南京农业大学学报
PublicationTitle_FL Journal of Nanjing Agricultural University
PublicationYear 2024
Publisher 宁夏大学葡萄酒与园艺学院,宁夏银川 750021%宁夏大学葡萄酒与园艺学院,宁夏银川 750021
宁夏现代设施园艺工程技术研究中心,宁夏银川 750021
Publisher_xml – name: 宁夏大学葡萄酒与园艺学院,宁夏银川 750021%宁夏大学葡萄酒与园艺学院,宁夏银川 750021
– name: 宁夏现代设施园艺工程技术研究中心,宁夏银川 750021
SSID ssib051370508
ssj0041892
ssib001101132
ssib002263529
Score 2.347331
Snippet S641.2; [目的]为快速检测叶片含水量,本研究探索及时监测番茄植株生长状况的在线监测模型.[方法]利用高光谱成像技术,提取195个叶片样本的平均光谱反射率.通过异常值剔除、样本集划分、5种预处理方法对原始光谱进行预处理和优化,采用连续投影算法(successive projections...
SourceID wanfang
SourceType Aggregation Database
StartPage 1221
Title 基于高光谱成像技术的番茄叶片含水量检测研究
URI https://d.wanfangdata.com.cn/periodical/njnydxxb202406019
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzR1Na9RANNR60YP4id8UcU6SmplMkpmTTnZTiqCnFuqp5LPSQ4R2C7WngpVaFduDgoig4El7sIL20N_j7rb_wvcm002kPVRPwhImb-Z9zdvMvDeZebGsmxCfpbJg1A5yJ7M5j7ktYurbwkvAe81l5he4NHD_gT8-ye9NeVNDw3ebp0s6yWi6dOi5kn-xKsDArnhK9i8sOyAKACiDfeEKFobrkWxMIo_IMRIqEnG8iohEkqiQSIFVAn6SRIKEDgkpiXwiBJGOrnKJGNMQhXsdoCBbRAEkIBIgXBc8ohSii5aGeIgS-lgFZEWguTvIDtCRBUfuAK8oK9dQDgExRCzlEKkpKwl0mm6xJt4mMjCKqJaGaKkQIlAqgChOlOar2kT5jYJWRHn7fx_dDVKTCbBXQlbXANG27inNydAFJYO6iUfCFkqLonq6rY_aibBuosmiWhLJVV9f2l89YfW6qSYODamRHrvmoBqgHiWK6oKj-1qi8SQzyqMEcBtie7SH1CYfoIMIoCuDp-UwdlDrarOBVmDU9i3w3sDlIsz7f4VrTJWYk4A55q2amUur7KlmzGhOjJQZ3Hz_Vh42gUPwi7lOZst4YZRhakI8xlq7KoMNpOVs-SRbXEzQpJhRSB6zjrMgoLipt_1wsg4IYMahzQR9mHupDgg86gaO5wzeO3IqZLU_wuhWpXlFqW7_KZM-41cWcTnTcEcnTlunTBw5oqpB4Yw1tPTorHVSzcyZXDr5OetO9-POr53Xe5vvus_Wdre-955vdJ-u914s9z58679f6b_9uvtqpbu-3V9b7W5s9rZ-7K2u9z4v936-7H960_-yfd6aHIsmWuO2-V6KPU8h0LeFCyNsKpmf49TKckoLx5dpFmeMpSkELpkrUkcUucdlAI45E6l0YTzmXi59nnH3gjVcPi7zi9YIj2OfFpwngnvcjVksRZIBShH4SZZIesm6YdSfNuPh_PQBm1w-SqMr1gksV6uaV63hztxCfg38_E5yXZvyN3B1tkU
linkProvider CAB International
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E9%AB%98%E5%85%89%E8%B0%B1%E6%88%90%E5%83%8F%E6%8A%80%E6%9C%AF%E7%9A%84%E7%95%AA%E8%8C%84%E5%8F%B6%E7%89%87%E5%90%AB%E6%B0%B4%E9%87%8F%E6%A3%80%E6%B5%8B%E7%A0%94%E7%A9%B6&rft.jtitle=%E5%8D%97%E4%BA%AC%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E9%A9%AC%E7%8E%B2&rft.au=%E6%9D%8E%E4%BA%9A%E5%A8%87&rft.au=%E5%BC%A0%E7%A5%8E%E6%B4%8B&rft.au=%E7%8E%8B%E9%9D%99&rft.date=2024&rft.pub=%E5%AE%81%E5%A4%8F%E5%A4%A7%E5%AD%A6%E8%91%A1%E8%90%84%E9%85%92%E4%B8%8E%E5%9B%AD%E8%89%BA%E5%AD%A6%E9%99%A2%2C%E5%AE%81%E5%A4%8F%E9%93%B6%E5%B7%9D+750021%25%E5%AE%81%E5%A4%8F%E5%A4%A7%E5%AD%A6%E8%91%A1%E8%90%84%E9%85%92%E4%B8%8E%E5%9B%AD%E8%89%BA%E5%AD%A6%E9%99%A2%2C%E5%AE%81%E5%A4%8F%E9%93%B6%E5%B7%9D+750021&rft.issn=1000-2030&rft.volume=47&rft.issue=6&rft.spage=1221&rft.epage=1229&rft_id=info:doi/10.7685%2Fjnau.202311037&rft.externalDocID=njnydxxb202406019
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnjnydxxb%2Fnjnydxxb.jpg