Fine-Grained Sleep Apnea Detection Method from Multichannel Ballistocardiogram Using Convolution Neural Network

TP399; Sleep apnea is a common health condition that can affect numerous aspects of life and may cause a lot of health problems especially in the middle-aged and elderly population.Polysomnography(PSG),as the gold standard,is an expensive and inconvenient way to diagnose sleep apnea.However,ballisto...

Full description

Saved in:
Bibliographic Details
Published in东华大学学报(英文版) Vol. 40; no. 2; pp. 185 - 192
Main Authors HUANG Yongfeng, HUANG Qihong, SUN Chenxi, YANG Shuchen, ZHANG Zhiming
Format Journal Article
LanguageEnglish
Published School of Computer Science and Technology,Donghua University,Shanghai 201620,China%Shanghai Yueyang Medtech Co.,Ltd.,Shanghai 201203,China 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract TP399; Sleep apnea is a common health condition that can affect numerous aspects of life and may cause a lot of health problems especially in the middle-aged and elderly population.Polysomnography(PSG),as the gold standard,is an expensive and inconvenient way to diagnose sleep apnea.However,ballistocardiogram can be collected by devices embedded in the surrounding environment,enabling inperceptible sleep apnea detection.Moreover,to obtain the fine-grained apnea fragments,a multistage sleep apnea detection model has been proposed.This model firstly uses an improved convolution neural network(CNN)model to coarsely identify apnea events and then a U-Net based model is applied to finely segment apnea fragments.In the experiment,sleep data of 11 patients with apnea for about 70 h have been collected,including BCG data derived from 18 piezoelectric polyvinylidene fluoride(PVDF)sensors embedded in the mattress and PSG data collected synchronously.The results show the accuracy of the classification model as good as 95.7%with 0.818 dice coefficient of the segmentation model,which indicates that the proposed model can almost match the performance of PSG in detecting apnea.
AbstractList TP399; Sleep apnea is a common health condition that can affect numerous aspects of life and may cause a lot of health problems especially in the middle-aged and elderly population.Polysomnography(PSG),as the gold standard,is an expensive and inconvenient way to diagnose sleep apnea.However,ballistocardiogram can be collected by devices embedded in the surrounding environment,enabling inperceptible sleep apnea detection.Moreover,to obtain the fine-grained apnea fragments,a multistage sleep apnea detection model has been proposed.This model firstly uses an improved convolution neural network(CNN)model to coarsely identify apnea events and then a U-Net based model is applied to finely segment apnea fragments.In the experiment,sleep data of 11 patients with apnea for about 70 h have been collected,including BCG data derived from 18 piezoelectric polyvinylidene fluoride(PVDF)sensors embedded in the mattress and PSG data collected synchronously.The results show the accuracy of the classification model as good as 95.7%with 0.818 dice coefficient of the segmentation model,which indicates that the proposed model can almost match the performance of PSG in detecting apnea.
Author ZHANG Zhiming
HUANG Qihong
SUN Chenxi
HUANG Yongfeng
YANG Shuchen
AuthorAffiliation School of Computer Science and Technology,Donghua University,Shanghai 201620,China%Shanghai Yueyang Medtech Co.,Ltd.,Shanghai 201203,China
AuthorAffiliation_xml – name: School of Computer Science and Technology,Donghua University,Shanghai 201620,China%Shanghai Yueyang Medtech Co.,Ltd.,Shanghai 201203,China
Author_xml – sequence: 1
  fullname: HUANG Yongfeng
– sequence: 2
  fullname: HUANG Qihong
– sequence: 3
  fullname: SUN Chenxi
– sequence: 4
  fullname: YANG Shuchen
– sequence: 5
  fullname: ZHANG Zhiming
BookMark eNo9kE1PAjEQhnvARET-gunVw2Lb7fbjiChoInpQzmTYtrBYWtLdFX6-jRrn8iST951Jnis0CDFYhG4omVCtFL_bT6iQrKgYIxNGGKWMEDZAw__tJRq37Z7kEUxyoocozptgi0WCDIPfvbVHPD0GC_jBdrbumhjw0na7aLBL8YCXve-aegchWI_vwfum7WINyTRxm-CAV20TtngWw1f0_U_71fYJfEZ3iunzGl048K0d_3GEVvPHj9lT8fK2eJ5NX4qWEq4KJ3S9qSojjGRVLUEx4zhVWmvgRJoNlJo7pZWWzlDttBOCSllTx3NWiaocodvfuycIDsJ2vY99Cvnj2uzM-bxZ2yyoJFmQKr8BELFgbQ
ClassificationCodes TP399
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.19884/j.1672-5220.202112002
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 192
ExternalDocumentID dhdxxb_e202302008
GroupedDBID -02
-0B
-SB
-S~
188
2B.
4A8
5VR
5XA
5XC
8RM
92D
92I
92M
93N
9D9
9DB
ABJNI
ACGFS
ADMLS
AFUIB
ALMA_UNASSIGNED_HOLDINGS
CAJEB
CCEZO
CDRFL
CHBEP
CW9
FA0
JUIAU
PSX
Q--
R-B
RT2
S..
T8R
TCJ
TGH
TTC
U1F
U1G
U5B
U5L
UGNYK
UZ2
UZ4
ID FETCH-LOGICAL-s1048-f69cb55d6d725c7a82df418999a407dba394f89897fd19f9f66177c1f47a88653
ISSN 1672-5220
IngestDate Thu May 29 03:59:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords deep learning
convolution neural network(CNN)
sleep apnea
ballistocardiogram
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1048-f69cb55d6d725c7a82df418999a407dba394f89897fd19f9f66177c1f47a88653
PageCount 8
ParticipantIDs wanfang_journals_dhdxxb_e202302008
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationTitle 东华大学学报(英文版)
PublicationTitle_FL Journal of Donghua University(English Edition)
PublicationYear 2023
Publisher School of Computer Science and Technology,Donghua University,Shanghai 201620,China%Shanghai Yueyang Medtech Co.,Ltd.,Shanghai 201203,China
Publisher_xml – name: School of Computer Science and Technology,Donghua University,Shanghai 201620,China%Shanghai Yueyang Medtech Co.,Ltd.,Shanghai 201203,China
SSID ssj0000627409
Score 2.234788
Snippet TP399; Sleep apnea is a common health condition that can affect numerous aspects of life and may cause a lot of health problems especially in the middle-aged...
SourceID wanfang
SourceType Aggregation Database
StartPage 185
Title Fine-Grained Sleep Apnea Detection Method from Multichannel Ballistocardiogram Using Convolution Neural Network
URI https://d.wanfangdata.com.cn/periodical/dhdxxb-e202302008
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9owFLc6etkO0z61b1nTfEKwxDixcwwQiqaCNlGk9oScxC5IKEwrTGx__Z4dN1ijh24Xy_Jn5Jef37P9PhD6pKRkoVR5R2qWG6faqpMXsUnKJNeacWWdJE2m8XjOvlxGlycPvnpaS7tt3i1-32lX8j9UhTKgq7GS_QfKNoNCAeSBvpAChSG9F41HICJ2zkyQByM2rpX6DlJlpSTsIltVxwCf2AjRtRWJNbY1lr6VWrf7cr02bgUKq5BqdLTac6cEUP10X902rjuAhtNaV9wXZEnGSF-QZECyiIghEZnJpIyk3GaGJI29TExEStKIZCPSHxAhSCaI6JN-aKoSqIVenIjEVtVtmhuK8TydnrWvNtW1Vo7PNqXfVsvNoWw2n7YHS1XtV81mZhrNljv4NSv_goP2PL0Ye8FZeyM1yikuzkWz7ZmnhcMLBPyTQ5hyuZOeUgsUzszN-1Ku2iDrxDSAEhuanNCoqbnaqV-QNY9jxnUuzGS25vNt2f2rPw16t_09phFzc6Cngc9VaidUDj3UYxFhHaLISRthHQnwiJElQrCak90O3oW1AeE4COiBdTcKleWy3O_zhTLrF1Br_X5K4eBEW-g0HU7OZ829o3FLzazmUzOyM5w3U36-c0Jr0FZpWAZP9rp4gh67QxNOawQ8RSeqeoYeea40n6ONjwVssYAtFnCDBVxjARssYB8L-BgL2GIBe1jANRaww8ILNB9lF4NxxwUT6dyEwKU6Ok6KPIrKuOQ0KrgUtNQsFHA-kizgZS57CdMmlirXZZjoRIPgynkRwnYlhYij3kvUqjaVeoWwUiAFl4mmjJdMsEKGuscF8DLNZRCU-Wv00S3Xwm0WN4sjAr25T6O36OEBEe9Qa_tjp96DELzNPzi6_gGBzKkY
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fine-Grained+Sleep+Apnea+Detection+Method+from+Multichannel+Ballistocardiogram+Using+Convolution+Neural+Network&rft.jtitle=%E4%B8%9C%E5%8D%8E%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=HUANG+Yongfeng&rft.au=HUANG+Qihong&rft.au=SUN+Chenxi&rft.au=YANG+Shuchen&rft.date=2023-04-01&rft.pub=School+of+Computer+Science+and+Technology%2CDonghua+University%2CShanghai+201620%2CChina%25Shanghai+Yueyang+Medtech+Co.%2CLtd.%2CShanghai+201203%2CChina&rft.issn=1672-5220&rft.volume=40&rft.issue=2&rft.spage=185&rft.epage=192&rft_id=info:doi/10.19884%2Fj.1672-5220.202112002&rft.externalDocID=dhdxxb_e202302008
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdhdxxb-e%2Fdhdxxb-e.jpg