极限学习决策网络指导的多目标粒子群算法

TP301; 在求解多目标优化问题时,粒子群优化算法通常采用预设的榜样选择方法和搜索策略,无法根据具体的寻优状态进行调整.面对不同的优化问题,不合适的搜索策略难以有效指导种群的进化,导致种群的搜索性能降低.为了解决以上问题,提出一种极限学习决策网络指导的多目标粒子群优化算法(ELDN-PSO).首先,将多目标优化问题分解成若干标量子问题,并构建一个极限学习决策网络.网络将粒子的位置作为输入,根据当前寻优状态为每个粒子选择合适的搜索动作.将粒子在子问题上的适应度值变化作为强化学习的样本用于训练网络,并通过极限学习机提升训练速度.在优化的过程中,网络会根据寻优状态自动调整,在不同的搜索阶段为粒子选...

Full description

Saved in:
Bibliographic Details
Published in计算机科学与探索 Vol. 18; no. 6; pp. 1513 - 1525
Main Authors 张一帆, 宋威
Format Journal Article
LanguageChinese
Published 江南大学 江苏省模式识别与计算智能工程实验室,江苏 无锡 214122 2024
江南大学 人工智能与计算机学院,江苏 无锡 214122%江南大学 人工智能与计算机学院,江苏 无锡 214122
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:TP301; 在求解多目标优化问题时,粒子群优化算法通常采用预设的榜样选择方法和搜索策略,无法根据具体的寻优状态进行调整.面对不同的优化问题,不合适的搜索策略难以有效指导种群的进化,导致种群的搜索性能降低.为了解决以上问题,提出一种极限学习决策网络指导的多目标粒子群优化算法(ELDN-PSO).首先,将多目标优化问题分解成若干标量子问题,并构建一个极限学习决策网络.网络将粒子的位置作为输入,根据当前寻优状态为每个粒子选择合适的搜索动作.将粒子在子问题上的适应度值变化作为强化学习的样本用于训练网络,并通过极限学习机提升训练速度.在优化的过程中,网络会根据寻优状态自动调整,在不同的搜索阶段为粒子选择合适的搜索策略.其次,多目标优化问题中存在一系列难以比较的非支配解,将每个解的领导能力量化成可进行比较的数值,从而更明确地为粒子选择合适的学习榜样.此外,使用一个外部档案储存较好的粒子,用于维护解集质量并指导种群的进化.在ZDT和DTLZ测试函数上进行对比实验,结果表明ELDN-PSO能够有效应对不同形状的Pareto前沿,提升种群的寻优速度以及解集的收敛性和多样性.
ISSN:1673-9418
DOI:10.3778/j.issn.1673-9418.2304026