基于计算机视觉的公路边坡裂缝监测方法

TP277; 为及时发现裂缝问题并减少潜在的危害,提出一种公路边坡裂缝的自动监测方法.以公路边坡裂缝为研究对象,针对裂缝图像形态不规则、周边环境干扰大的特点,设计了公路边坡裂缝分割网络(slope cracks segmentation network,SCSNet)和公路边坡裂缝几何参数计算方法.该网络首先采用编码器逐渐捕获更高层次的语义特征,其次采用解码器通过逐渐恢复空间信息并结合跳跃连接融合不同尺度间的信息,然后利用通道注意力机制,学习每个通道间的特征,增强裂缝的特征表达.另外,提出参数计算方法,基于连通域分析得到裂缝连通域,并计算裂缝长度、宽度、面积几何参数.实验结果表明:裂缝分割网络...

Full description

Saved in:
Bibliographic Details
Published in北京工业大学学报 Vol. 50; no. 6; pp. 702 - 710
Main Authors 陈善继, 刘天禹, 刘鹏宇, 黄凯, 李瑶瑶
Format Journal Article
LanguageChinese
Published 北京工业大学计算智能与智能系统北京市重点实验室,北京 100124%青海省交通建设管理有限公司,西宁 810021 01.06.2024
青海民族大学物理与电子信息工程学院,西宁 810007%北京工业大学信息学部,北京 100124
先进信息网络北京实验室,北京 100124
Subjects
Online AccessGet full text
ISSN0254-0037
DOI10.11936/bjutxb2022080018

Cover

Abstract TP277; 为及时发现裂缝问题并减少潜在的危害,提出一种公路边坡裂缝的自动监测方法.以公路边坡裂缝为研究对象,针对裂缝图像形态不规则、周边环境干扰大的特点,设计了公路边坡裂缝分割网络(slope cracks segmentation network,SCSNet)和公路边坡裂缝几何参数计算方法.该网络首先采用编码器逐渐捕获更高层次的语义特征,其次采用解码器通过逐渐恢复空间信息并结合跳跃连接融合不同尺度间的信息,然后利用通道注意力机制,学习每个通道间的特征,增强裂缝的特征表达.另外,提出参数计算方法,基于连通域分析得到裂缝连通域,并计算裂缝长度、宽度、面积几何参数.实验结果表明:裂缝分割网络的平均交并比达87.86%,该网络能较好地提取公路边坡裂缝特征;裂缝几何参数计算方法能较准确地测算裂缝的当前状态.
AbstractList TP277; 为及时发现裂缝问题并减少潜在的危害,提出一种公路边坡裂缝的自动监测方法.以公路边坡裂缝为研究对象,针对裂缝图像形态不规则、周边环境干扰大的特点,设计了公路边坡裂缝分割网络(slope cracks segmentation network,SCSNet)和公路边坡裂缝几何参数计算方法.该网络首先采用编码器逐渐捕获更高层次的语义特征,其次采用解码器通过逐渐恢复空间信息并结合跳跃连接融合不同尺度间的信息,然后利用通道注意力机制,学习每个通道间的特征,增强裂缝的特征表达.另外,提出参数计算方法,基于连通域分析得到裂缝连通域,并计算裂缝长度、宽度、面积几何参数.实验结果表明:裂缝分割网络的平均交并比达87.86%,该网络能较好地提取公路边坡裂缝特征;裂缝几何参数计算方法能较准确地测算裂缝的当前状态.
Abstract_FL An automatic monitoring method for highway slope cracks was proposed,aiming to timely detect crack problems and reduce potential hazards.Taking highway slope cracks as the research object,for the characteristics of irregularity of crack image pattern and large interference of surrounding environment,a highway slope cracks segmentation network(SCSNet)and a highway slope crack geometric parameter calculation method were designed.An encoder was used to gradually capture higher-level semantic features,and a decoder was used to fuse information between different scales by gradually recovering spatial information and combining jump connections.Then,for the case of complex road slope crack images and other situations,a channel attention mechanism was used to learn the features between channels and enhance the feature representation of cracks.A method based on the connectivity domain analysis was proposed to obtain the crack connectivity domain and calculate the crack length,width and area geometric parameters.Results show that the average intersection ratio of the segmentation network reaches 87.86%,which can extract the highway slope crack features better,and the current state of the cracks can be measured more accurately using the crack geometric parameter calculation method.
Author 黄凯
李瑶瑶
陈善继
刘天禹
刘鹏宇
AuthorAffiliation 青海民族大学物理与电子信息工程学院,西宁 810007%北京工业大学信息学部,北京 100124;先进信息网络北京实验室,北京 100124;北京工业大学计算智能与智能系统北京市重点实验室,北京 100124%青海省交通建设管理有限公司,西宁 810021
AuthorAffiliation_xml – name: 青海民族大学物理与电子信息工程学院,西宁 810007%北京工业大学信息学部,北京 100124;先进信息网络北京实验室,北京 100124;北京工业大学计算智能与智能系统北京市重点实验室,北京 100124%青海省交通建设管理有限公司,西宁 810021
Author_FL LIU Pengyu
CHEN Shanji
HUANG Kai
LI Yaoyao
LIU Tianyu
Author_FL_xml – sequence: 1
  fullname: CHEN Shanji
– sequence: 2
  fullname: LIU Tianyu
– sequence: 3
  fullname: LIU Pengyu
– sequence: 4
  fullname: HUANG Kai
– sequence: 5
  fullname: LI Yaoyao
Author_xml – sequence: 1
  fullname: 陈善继
– sequence: 2
  fullname: 刘天禹
– sequence: 3
  fullname: 刘鹏宇
– sequence: 4
  fullname: 黄凯
– sequence: 5
  fullname: 李瑶瑶
BookMark eNotj7tKA0EYhaeIYIx5AB_BYvWfS2ZmSwneIGAT67AzsxtcZAKuwdiKCiIIFlFQQwgWaSQWIpJFfBp3dx7DRa1O83G-c5ZQxfZsiNAKhjWMfcrXVdw_HigChIAEwLKCqkAazAOgYhHVk-RAATDiC0xpFfFsnH6nN242KWb3-VPqppduelU8nGcXL-7j1X3Ns9HEPZ8Vn6Pi8TZ_v87v5vnbcBktRMFhEtb_s4b2tzbbzR2vtbe929xoeQkGJjxfl2pjgGEVMqWlhihgRvmSCNOgEWaEGsnLqaFWRKlQa4ASwdQYwyWntIZW_3pPAhsFttuJe_0jWxo7Ku6emsHvUQYcQNAfLwdfFg
ClassificationCodes TP277
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11936/bjutxb2022080018
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Computer Vision-based Method for Monitoring Road Slope Cracks
EndPage 710
ExternalDocumentID bjgydxxb202406007
GrantInformation_xml – fundername: 青海省科技厅重点研发与转化计划资助项目
  funderid: (2022-QY-205)
GroupedDBID -03
2B.
4A8
5XA
5XD
92H
92I
93N
ABJNI
ACGFS
ADMLS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CW9
P2P
PSX
TCJ
TGT
U1G
U5M
ID FETCH-LOGICAL-s1047-9c025dd041be4bc8c0fa4db9827d53f1423d86022ecb2bbecc000fa13ddd68633
ISSN 0254-0037
IngestDate Thu May 29 03:59:35 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Keywords SCSNet
分割
channel attention
partitioning
裂缝
cracks
connectivity domain
通道注意力
geometric parameters
连通域
几何参数
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1047-9c025dd041be4bc8c0fa4db9827d53f1423d86022ecb2bbecc000fa13ddd68633
PageCount 9
ParticipantIDs wanfang_journals_bjgydxxb202406007
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationTitle 北京工业大学学报
PublicationTitle_FL Journal of Beijing University of Technology
PublicationYear 2024
Publisher 北京工业大学计算智能与智能系统北京市重点实验室,北京 100124%青海省交通建设管理有限公司,西宁 810021
青海民族大学物理与电子信息工程学院,西宁 810007%北京工业大学信息学部,北京 100124
先进信息网络北京实验室,北京 100124
Publisher_xml – name: 青海民族大学物理与电子信息工程学院,西宁 810007%北京工业大学信息学部,北京 100124
– name: 先进信息网络北京实验室,北京 100124
– name: 北京工业大学计算智能与智能系统北京市重点实验室,北京 100124%青海省交通建设管理有限公司,西宁 810021
SSID ssib004297133
ssib051370302
ssj0039890
ssib001129165
ssib002263171
Score 2.3841355
Snippet TP277; 为及时发现裂缝问题并减少潜在的危害,提出一种公路边坡裂缝的自动监测方法.以公路边坡裂缝为研究对象,针对裂缝图像形态不规则、周边环境干扰大的特点,设计了公路边坡裂缝分割网络(slope cracks segmentation...
SourceID wanfang
SourceType Aggregation Database
StartPage 702
Title 基于计算机视觉的公路边坡裂缝监测方法
URI https://d.wanfangdata.com.cn/periodical/bjgydxxb202406007
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEB5CctGD-MQ3QexTWN2emZ7pPs7MzhLEeDGB3ML0PCI5rGB2IeYoKoggeFBBDRI85CLxICIJ4q8xu_szrKrp3RncCDGXpre7q6uqv9qu6qEflnVTF2mhYXZspJ6XN9wkdxvScXUjlzxJeQJBfoYHnBfuefNL7p1lsTw1Xd-11OvqW-nmoedKjoMqlAGueEr2P5AddwoFkAd8IQWEIT0SxiwWTLVZGLDYxVTGLJYsiFnAWexjRvks9piKqA1U-Ux6o4zCNgqoXOxHChZEWBUCYZsyMQsVsWhRh0DlMGkjVRhhIZKHTHFkEUIPIfHyiApSh5UPW45iX-ISkUgkLbITxE5QiURhoCRwUTzMAF-vlvGYBCoxshEWK6YUk5Jk9EgPEC0E6qqJwHolR_2SzgGKeEgThZLLNrWNmfTrjKBbM044PPVvJbZb7eki6z6unocipwxy0mFhy5AjzJNVPo44iFmOgWr_QwxJECrUQxIV_CxhRqYxVgUBEpYlIKQdTXY1h5dq2VAnCIUWU7axAtAT7SKCJcqotUv8mkZtEM4YY4wmVmpbqq2aZJ5ksGiehC8UVuYpEB_QwSZThQENx3DxOYkX_fKaa7MFYNMsr_sZ-eHyAmIz39Sdqt-0a_GZX26DnnT9ih4n0mu97oa28QC5xBcnqzhnvPtUr60-zjaoEYSzdBfFjO37uMtjJmgt3L1frScgGua1bQCwVoF4m9eDOZ9X6yXBHXSg4_vrHCXNR16jrtlWgaLe_ltQOjXYKZLOai3AXTxtnTIr09mgnGbOWFObD85aJ2v3lZ6zvINP-7_3Xw13twe77_of94c7z4c7Lwbvnx48-zL88XX4a-9ga3v4-cng59bgw-v-95f9t3v9b2_OW0vteDGab5iHVxrrdHOLSkHiLGu6XOeuTmXaLBI300rafiacgsMSLMO36-w81bZGLwCBVZFwJ8syT3qOc8Ga7jzs5Bet2cTXjgCHQF-elJck4P-1nwieFU4mdHrJumG0XjET6_rKBD6Xj9LoinWi-stftaa7j3r5NVgwdPV1A-sfDPvHPw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%AE%A1%E7%AE%97%E6%9C%BA%E8%A7%86%E8%A7%89%E7%9A%84%E5%85%AC%E8%B7%AF%E8%BE%B9%E5%9D%A1%E8%A3%82%E7%BC%9D%E7%9B%91%E6%B5%8B%E6%96%B9%E6%B3%95&rft.jtitle=%E5%8C%97%E4%BA%AC%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E9%99%88%E5%96%84%E7%BB%A7&rft.au=%E5%88%98%E5%A4%A9%E7%A6%B9&rft.au=%E5%88%98%E9%B9%8F%E5%AE%87&rft.au=%E9%BB%84%E5%87%AF&rft.date=2024-06-01&rft.pub=%E5%8C%97%E4%BA%AC%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%99%BA%E8%83%BD%E4%B8%8E%E6%99%BA%E8%83%BD%E7%B3%BB%E7%BB%9F%E5%8C%97%E4%BA%AC%E5%B8%82%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%8C%97%E4%BA%AC+100124%25%E9%9D%92%E6%B5%B7%E7%9C%81%E4%BA%A4%E9%80%9A%E5%BB%BA%E8%AE%BE%E7%AE%A1%E7%90%86%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C%E8%A5%BF%E5%AE%81+810021&rft.issn=0254-0037&rft.volume=50&rft.issue=6&rft.spage=702&rft.epage=710&rft_id=info:doi/10.11936%2Fbjutxb2022080018&rft.externalDocID=bjgydxxb202406007
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbjgydxxb%2Fbjgydxxb.jpg