基于块编码特点的压缩视频质量增强算法

TN919.81; 针对现有压缩视频质量增强算法未能充分利用压缩视频特点的问题,研究了视频编码与压缩视频质量增强任务之间的本质关系,并针对性地设计了一种基于三维卷积神经网络(3D convolutional neural network,3D-CNN)的非对齐压缩视频质量增强算法.实验结果表明:相较于高效视频编码(high efficiency video coding,HEVC)标准H.265,所提算法在低延迟(low delay,LD)配置下且量化参数(quantization parameter,QP)为37 时,峰值信噪比(peak signal-to-noise ratio,PSNR...

Full description

Saved in:
Bibliographic Details
Published in北京工业大学学报 Vol. 50; no. 9; pp. 1069 - 1076
Main Authors 于海, 杨磊, 高阳, 刘枫琪, 刘鹏宇, 孙萱, 张悦
Format Journal Article
LanguageChinese
Published 计算智能与智能系统北京市重点实验室,北京 100124 01.09.2024
先进信息网络北京实验室,北京 100124
河南九域恩湃电力技术有限公司,郑州 450000%北京工业大学信息学部,北京 100124
Subjects
Online AccessGet full text
ISSN0254-0037
DOI10.11936/bjutxb2022080003

Cover

Abstract TN919.81; 针对现有压缩视频质量增强算法未能充分利用压缩视频特点的问题,研究了视频编码与压缩视频质量增强任务之间的本质关系,并针对性地设计了一种基于三维卷积神经网络(3D convolutional neural network,3D-CNN)的非对齐压缩视频质量增强算法.实验结果表明:相较于高效视频编码(high efficiency video coding,HEVC)标准H.265,所提算法在低延迟(low delay,LD)配置下且量化参数(quantization parameter,QP)为37 时,峰值信噪比(peak signal-to-noise ratio,PSNR)提升了 0.465 2 dB;相较于数据压缩会议(data compression conference,DCC)中提出的多帧引导的注意力网络(multi-frame guided attention network,MGANet)方法,该算法PSNR的增长量提升了15.1%.
AbstractList TN919.81; 针对现有压缩视频质量增强算法未能充分利用压缩视频特点的问题,研究了视频编码与压缩视频质量增强任务之间的本质关系,并针对性地设计了一种基于三维卷积神经网络(3D convolutional neural network,3D-CNN)的非对齐压缩视频质量增强算法.实验结果表明:相较于高效视频编码(high efficiency video coding,HEVC)标准H.265,所提算法在低延迟(low delay,LD)配置下且量化参数(quantization parameter,QP)为37 时,峰值信噪比(peak signal-to-noise ratio,PSNR)提升了 0.465 2 dB;相较于数据压缩会议(data compression conference,DCC)中提出的多帧引导的注意力网络(multi-frame guided attention network,MGANet)方法,该算法PSNR的增长量提升了15.1%.
Abstract_FL To solve the issue that existing compressed video quality enhancement algorithms do not fully utilize the characteristics of compressed videos,the intrinsic relationship between video encoding and the task of compressed video quality enhancement was studied and a targeted non-aligned compressed video quality enhancement algorithm was designed contrapuntally,utilizing a three-dimensional convolutional neural network(3D-CNN).Experimental results show that compared with the high efficiency video coding(HEVC)standard,the peak signal-to-noise ratio(PSNR)of the proposed method is improved to 0.465 2 dB when low delay(LD)configuration and quantization parameter(QP)is 37.Compared with MGANet proposed in data compression conference(DCC),the PSNR increase of the proposed algorithm is improved by 15.1%.
Author 于海
孙萱
刘枫琪
刘鹏宇
高阳
张悦
杨磊
AuthorAffiliation 河南九域恩湃电力技术有限公司,郑州 450000%北京工业大学信息学部,北京 100124;先进信息网络北京实验室,北京 100124;计算智能与智能系统北京市重点实验室,北京 100124
AuthorAffiliation_xml – name: 河南九域恩湃电力技术有限公司,郑州 450000%北京工业大学信息学部,北京 100124;先进信息网络北京实验室,北京 100124;计算智能与智能系统北京市重点实验室,北京 100124
Author_FL YU Hai
LIU Pengyu
SUN Xuan
GAO Yang
LIU Fengqi
YANG Lei
ZHANG Yue
Author_FL_xml – sequence: 1
  fullname: YU Hai
– sequence: 2
  fullname: YANG Lei
– sequence: 3
  fullname: GAO Yang
– sequence: 4
  fullname: LIU Fengqi
– sequence: 5
  fullname: LIU Pengyu
– sequence: 6
  fullname: SUN Xuan
– sequence: 7
  fullname: ZHANG Yue
Author_xml – sequence: 1
  fullname: 于海
– sequence: 2
  fullname: 杨磊
– sequence: 3
  fullname: 高阳
– sequence: 4
  fullname: 刘枫琪
– sequence: 5
  fullname: 刘鹏宇
– sequence: 6
  fullname: 孙萱
– sequence: 7
  fullname: 张悦
BookMark eNotj7tKA0EYRqeIYIx5AB_BYvWfy87slBK8QcBG6zDDzAQX2YBrMJaKKCJEUmhA8EIatbHRJss-juMkb2FQq-9U5_AtoErWySxCSxhWMJaUr-q0e9TTBAiBBABoBVWBxCyaoZhH9Tzf1wCMSIEprSLun4qvou8fhqG8C8-n4Woczsbh_tz3r0P5Nnm5mI4Gk8_X6eWNHz36sgjvw--P20U059RBbuv_W0N7G-u7ja2oubO53VhrRjkGxiNtRQISC51IbI00NuZWGSy5JMwxbKQzCeOKKBFbZrghsXNgqZCYckydozW0_Oc9VplTWbuVdrqH2azY0mn7xPR-jzKQAJz-AMSJXjw
ClassificationCodes TN919.81
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11936/bjutxb2022080003
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Compressed Video Quality Enhancement Method Based on Block Coding Features
EndPage 1076
ExternalDocumentID bjgydxxb202409006
GrantInformation_xml – fundername: 青海省重点研发与转化计划资助项目
  funderid: (2022-QY-205)
GroupedDBID -03
2B.
4A8
5XA
5XD
92H
92I
93N
ABJNI
ACGFS
ADMLS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CW9
P2P
PSX
TCJ
TGT
U1G
U5M
ID FETCH-LOGICAL-s1046-be780917b891ed9de56ead196924f41d9fd846a2a75e4d6d25ff0e37913613ff3
ISSN 0254-0037
IngestDate Thu May 29 03:59:35 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Keywords convolutional neural network(CNN)
deep learning
高效视频编码(high efficiency video coding,HEVC)
3D convolutional neural network(3D-CNN)
compressed video quality enhancement
压缩视频质量增强
深度学习
卷积神经网络(convolutional neural network,CNN)
high efficiency video coding(HEVC)
视频编码
video coding
三维卷积神经网络(3D convolution
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1046-be780917b891ed9de56ead196924f41d9fd846a2a75e4d6d25ff0e37913613ff3
PageCount 8
ParticipantIDs wanfang_journals_bjgydxxb202409006
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle 北京工业大学学报
PublicationTitle_FL Journal of Beijing University of Technology
PublicationYear 2024
Publisher 计算智能与智能系统北京市重点实验室,北京 100124
先进信息网络北京实验室,北京 100124
河南九域恩湃电力技术有限公司,郑州 450000%北京工业大学信息学部,北京 100124
Publisher_xml – name: 先进信息网络北京实验室,北京 100124
– name: 计算智能与智能系统北京市重点实验室,北京 100124
– name: 河南九域恩湃电力技术有限公司,郑州 450000%北京工业大学信息学部,北京 100124
SSID ssib004297133
ssib051370302
ssj0039890
ssib001129165
ssib002263171
Score 2.3964946
Snippet TN919.81; 针对现有压缩视频质量增强算法未能充分利用压缩视频特点的问题,研究了视频编码与压缩视频质量增强任务之间的本质关系,并针对性地设计了一种基于三维卷积神经网络(3D convolutional neural...
SourceID wanfang
SourceType Aggregation Database
StartPage 1069
Title 基于块编码特点的压缩视频质量增强算法
URI https://d.wanfangdata.com.cn/periodical/bjgydxxb202409006
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LaxQxGA-1vehBfOKbIuYko_PIZJJjZneWItaLLfRWNjszlR62YHeh9qaIIkLFgxYEH9SDevGily7757hO-1_4fZl0Z2x7qF5CyJcv32sm-WUmD0JuRG3ONePaASguHZa5HUfnHn5t0qGbBh0tzN_z2Xt8Zp7dWQgXJo59rq1a6vf0rc76oftK_ieqUAZxxV2y_xDZcaNQAHmIL6QQYUiPFGOahFS2aKxowjAViSlpUhnRJKJxg0qOGeUCYMSMkDSWJuPbjAQuhlzAK2LLpYAkqIJqwC6p8qn0sCRmVAksEUBqIReSjFDgQjVAVmKkcxoHtLzYcg_7GikNQzXaqoZhBJbQlAhUBttkKBozTap4LcOpAK5w7xmpGQ3SsKWKwtELqCu0HgBbRQFzYiqNFZDGQUUB7YShcLRJGWdIlypV_zLis_HSr_JZNp6C6t5fxktp3CGoCGjctOaVmu4nReipuHR9jOE83E0CY2Zd36yFMDRCE2OYQsayBJzoNw42dRMPwyq3k9vuH6buDh4PVB-rykN67TspawMPzOxlDcTApJ4fPkBKc4WPXu731rSP26wFTosrNDBeo6mXlx6la6YSc6U51n7KjyJcCzGlmrN371eoGzCjV_tZDogeUKlXhzyRV80qQi_AYWZ8ylsghf0Uag22iw9Q1dv7FTV767p5u7tUg4Fzp8hJO3-bVuXLeJpMrD84Q07UTvU8S_jo4-DXYGP0frMYvi0-PS5ebBdPtot3T0cbL4vht50vz3a3Xu_8_Lr7_NVo68NoOCi-b_7-8eYcmW8lc40Zx15P4qziwghHZ5EAtB1Bd-ZlqUyzkEO3jMdN-SxnXirzFMB9229HYcZSnvphnrtZEEkvAAyd58F5Mtld6WYXyLTIwES8uS9LoWURaMbyQGsZpqKT6Y64SK5bqxdt97O6eCA-l45S6TI5Xr0qV8hk72E_uwqwuqev2bD-AeoDmRY
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%9D%97%E7%BC%96%E7%A0%81%E7%89%B9%E7%82%B9%E7%9A%84%E5%8E%8B%E7%BC%A9%E8%A7%86%E9%A2%91%E8%B4%A8%E9%87%8F%E5%A2%9E%E5%BC%BA%E7%AE%97%E6%B3%95&rft.jtitle=%E5%8C%97%E4%BA%AC%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E4%BA%8E%E6%B5%B7&rft.au=%E6%9D%A8%E7%A3%8A&rft.au=%E9%AB%98%E9%98%B3&rft.au=%E5%88%98%E6%9E%AB%E7%90%AA&rft.date=2024-09-01&rft.pub=%E8%AE%A1%E7%AE%97%E6%99%BA%E8%83%BD%E4%B8%8E%E6%99%BA%E8%83%BD%E7%B3%BB%E7%BB%9F%E5%8C%97%E4%BA%AC%E5%B8%82%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%8C%97%E4%BA%AC+100124&rft.issn=0254-0037&rft.volume=50&rft.issue=9&rft.spage=1069&rft.epage=1076&rft_id=info:doi/10.11936%2Fbjutxb2022080003&rft.externalDocID=bjgydxxb202409006
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbjgydxxb%2Fbjgydxxb.jpg