基于块编码特点的压缩视频质量增强算法
TN919.81; 针对现有压缩视频质量增强算法未能充分利用压缩视频特点的问题,研究了视频编码与压缩视频质量增强任务之间的本质关系,并针对性地设计了一种基于三维卷积神经网络(3D convolutional neural network,3D-CNN)的非对齐压缩视频质量增强算法.实验结果表明:相较于高效视频编码(high efficiency video coding,HEVC)标准H.265,所提算法在低延迟(low delay,LD)配置下且量化参数(quantization parameter,QP)为37 时,峰值信噪比(peak signal-to-noise ratio,PSNR...
Saved in:
Published in | 北京工业大学学报 Vol. 50; no. 9; pp. 1069 - 1076 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | Chinese |
Published |
计算智能与智能系统北京市重点实验室,北京 100124
01.09.2024
先进信息网络北京实验室,北京 100124 河南九域恩湃电力技术有限公司,郑州 450000%北京工业大学信息学部,北京 100124 |
Subjects | |
Online Access | Get full text |
ISSN | 0254-0037 |
DOI | 10.11936/bjutxb2022080003 |
Cover
Abstract | TN919.81; 针对现有压缩视频质量增强算法未能充分利用压缩视频特点的问题,研究了视频编码与压缩视频质量增强任务之间的本质关系,并针对性地设计了一种基于三维卷积神经网络(3D convolutional neural network,3D-CNN)的非对齐压缩视频质量增强算法.实验结果表明:相较于高效视频编码(high efficiency video coding,HEVC)标准H.265,所提算法在低延迟(low delay,LD)配置下且量化参数(quantization parameter,QP)为37 时,峰值信噪比(peak signal-to-noise ratio,PSNR)提升了 0.465 2 dB;相较于数据压缩会议(data compression conference,DCC)中提出的多帧引导的注意力网络(multi-frame guided attention network,MGANet)方法,该算法PSNR的增长量提升了15.1%. |
---|---|
AbstractList | TN919.81; 针对现有压缩视频质量增强算法未能充分利用压缩视频特点的问题,研究了视频编码与压缩视频质量增强任务之间的本质关系,并针对性地设计了一种基于三维卷积神经网络(3D convolutional neural network,3D-CNN)的非对齐压缩视频质量增强算法.实验结果表明:相较于高效视频编码(high efficiency video coding,HEVC)标准H.265,所提算法在低延迟(low delay,LD)配置下且量化参数(quantization parameter,QP)为37 时,峰值信噪比(peak signal-to-noise ratio,PSNR)提升了 0.465 2 dB;相较于数据压缩会议(data compression conference,DCC)中提出的多帧引导的注意力网络(multi-frame guided attention network,MGANet)方法,该算法PSNR的增长量提升了15.1%. |
Abstract_FL | To solve the issue that existing compressed video quality enhancement algorithms do not fully utilize the characteristics of compressed videos,the intrinsic relationship between video encoding and the task of compressed video quality enhancement was studied and a targeted non-aligned compressed video quality enhancement algorithm was designed contrapuntally,utilizing a three-dimensional convolutional neural network(3D-CNN).Experimental results show that compared with the high efficiency video coding(HEVC)standard,the peak signal-to-noise ratio(PSNR)of the proposed method is improved to 0.465 2 dB when low delay(LD)configuration and quantization parameter(QP)is 37.Compared with MGANet proposed in data compression conference(DCC),the PSNR increase of the proposed algorithm is improved by 15.1%. |
Author | 于海 孙萱 刘枫琪 刘鹏宇 高阳 张悦 杨磊 |
AuthorAffiliation | 河南九域恩湃电力技术有限公司,郑州 450000%北京工业大学信息学部,北京 100124;先进信息网络北京实验室,北京 100124;计算智能与智能系统北京市重点实验室,北京 100124 |
AuthorAffiliation_xml | – name: 河南九域恩湃电力技术有限公司,郑州 450000%北京工业大学信息学部,北京 100124;先进信息网络北京实验室,北京 100124;计算智能与智能系统北京市重点实验室,北京 100124 |
Author_FL | YU Hai LIU Pengyu SUN Xuan GAO Yang LIU Fengqi YANG Lei ZHANG Yue |
Author_FL_xml | – sequence: 1 fullname: YU Hai – sequence: 2 fullname: YANG Lei – sequence: 3 fullname: GAO Yang – sequence: 4 fullname: LIU Fengqi – sequence: 5 fullname: LIU Pengyu – sequence: 6 fullname: SUN Xuan – sequence: 7 fullname: ZHANG Yue |
Author_xml | – sequence: 1 fullname: 于海 – sequence: 2 fullname: 杨磊 – sequence: 3 fullname: 高阳 – sequence: 4 fullname: 刘枫琪 – sequence: 5 fullname: 刘鹏宇 – sequence: 6 fullname: 孙萱 – sequence: 7 fullname: 张悦 |
BookMark | eNotj7tKA0EYRqeIYIx5AB_BYvWfy87slBK8QcBG6zDDzAQX2YBrMJaKKCJEUmhA8EIatbHRJss-juMkb2FQq-9U5_AtoErWySxCSxhWMJaUr-q0e9TTBAiBBABoBVWBxCyaoZhH9Tzf1wCMSIEprSLun4qvou8fhqG8C8-n4Woczsbh_tz3r0P5Nnm5mI4Gk8_X6eWNHz36sgjvw--P20U059RBbuv_W0N7G-u7ja2oubO53VhrRjkGxiNtRQISC51IbI00NuZWGSy5JMwxbKQzCeOKKBFbZrghsXNgqZCYckydozW0_Oc9VplTWbuVdrqH2azY0mn7xPR-jzKQAJz-AMSJXjw |
ClassificationCodes | TN919.81 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.11936/bjutxb2022080003 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | Compressed Video Quality Enhancement Method Based on Block Coding Features |
EndPage | 1076 |
ExternalDocumentID | bjgydxxb202409006 |
GrantInformation_xml | – fundername: 青海省重点研发与转化计划资助项目 funderid: (2022-QY-205) |
GroupedDBID | -03 2B. 4A8 5XA 5XD 92H 92I 93N ABJNI ACGFS ADMLS ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB CW9 P2P PSX TCJ TGT U1G U5M |
ID | FETCH-LOGICAL-s1046-be780917b891ed9de56ead196924f41d9fd846a2a75e4d6d25ff0e37913613ff3 |
ISSN | 0254-0037 |
IngestDate | Thu May 29 03:59:35 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 9 |
Keywords | convolutional neural network(CNN) deep learning 高效视频编码(high efficiency video coding,HEVC) 3D convolutional neural network(3D-CNN) compressed video quality enhancement 压缩视频质量增强 深度学习 卷积神经网络(convolutional neural network,CNN) high efficiency video coding(HEVC) 视频编码 video coding 三维卷积神经网络(3D convolution |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1046-be780917b891ed9de56ead196924f41d9fd846a2a75e4d6d25ff0e37913613ff3 |
PageCount | 8 |
ParticipantIDs | wanfang_journals_bjgydxxb202409006 |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 北京工业大学学报 |
PublicationTitle_FL | Journal of Beijing University of Technology |
PublicationYear | 2024 |
Publisher | 计算智能与智能系统北京市重点实验室,北京 100124 先进信息网络北京实验室,北京 100124 河南九域恩湃电力技术有限公司,郑州 450000%北京工业大学信息学部,北京 100124 |
Publisher_xml | – name: 先进信息网络北京实验室,北京 100124 – name: 计算智能与智能系统北京市重点实验室,北京 100124 – name: 河南九域恩湃电力技术有限公司,郑州 450000%北京工业大学信息学部,北京 100124 |
SSID | ssib004297133 ssib051370302 ssj0039890 ssib001129165 ssib002263171 |
Score | 2.3964946 |
Snippet | TN919.81; 针对现有压缩视频质量增强算法未能充分利用压缩视频特点的问题,研究了视频编码与压缩视频质量增强任务之间的本质关系,并针对性地设计了一种基于三维卷积神经网络(3D convolutional neural... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 1069 |
Title | 基于块编码特点的压缩视频质量增强算法 |
URI | https://d.wanfangdata.com.cn/periodical/bjgydxxb202409006 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LaxQxGA-1vehBfOKbIuYko_PIZJJjZneWItaLLfRWNjszlR62YHeh9qaIIkLFgxYEH9SDevGily7757hO-1_4fZl0Z2x7qF5CyJcv32sm-WUmD0JuRG3ONePaASguHZa5HUfnHn5t0qGbBh0tzN_z2Xt8Zp7dWQgXJo59rq1a6vf0rc76oftK_ieqUAZxxV2y_xDZcaNQAHmIL6QQYUiPFGOahFS2aKxowjAViSlpUhnRJKJxg0qOGeUCYMSMkDSWJuPbjAQuhlzAK2LLpYAkqIJqwC6p8qn0sCRmVAksEUBqIReSjFDgQjVAVmKkcxoHtLzYcg_7GikNQzXaqoZhBJbQlAhUBttkKBozTap4LcOpAK5w7xmpGQ3SsKWKwtELqCu0HgBbRQFzYiqNFZDGQUUB7YShcLRJGWdIlypV_zLis_HSr_JZNp6C6t5fxktp3CGoCGjctOaVmu4nReipuHR9jOE83E0CY2Zd36yFMDRCE2OYQsayBJzoNw42dRMPwyq3k9vuH6buDh4PVB-rykN67TspawMPzOxlDcTApJ4fPkBKc4WPXu731rSP26wFTosrNDBeo6mXlx6la6YSc6U51n7KjyJcCzGlmrN371eoGzCjV_tZDogeUKlXhzyRV80qQi_AYWZ8ylsghf0Uag22iw9Q1dv7FTV767p5u7tUg4Fzp8hJO3-bVuXLeJpMrD84Q07UTvU8S_jo4-DXYGP0frMYvi0-PS5ebBdPtot3T0cbL4vht50vz3a3Xu_8_Lr7_NVo68NoOCi-b_7-8eYcmW8lc40Zx15P4qziwghHZ5EAtB1Bd-ZlqUyzkEO3jMdN-SxnXirzFMB9229HYcZSnvphnrtZEEkvAAyd58F5Mtld6WYXyLTIwES8uS9LoWURaMbyQGsZpqKT6Y64SK5bqxdt97O6eCA-l45S6TI5Xr0qV8hk72E_uwqwuqev2bD-AeoDmRY |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%9D%97%E7%BC%96%E7%A0%81%E7%89%B9%E7%82%B9%E7%9A%84%E5%8E%8B%E7%BC%A9%E8%A7%86%E9%A2%91%E8%B4%A8%E9%87%8F%E5%A2%9E%E5%BC%BA%E7%AE%97%E6%B3%95&rft.jtitle=%E5%8C%97%E4%BA%AC%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E4%BA%8E%E6%B5%B7&rft.au=%E6%9D%A8%E7%A3%8A&rft.au=%E9%AB%98%E9%98%B3&rft.au=%E5%88%98%E6%9E%AB%E7%90%AA&rft.date=2024-09-01&rft.pub=%E8%AE%A1%E7%AE%97%E6%99%BA%E8%83%BD%E4%B8%8E%E6%99%BA%E8%83%BD%E7%B3%BB%E7%BB%9F%E5%8C%97%E4%BA%AC%E5%B8%82%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%8C%97%E4%BA%AC+100124&rft.issn=0254-0037&rft.volume=50&rft.issue=9&rft.spage=1069&rft.epage=1076&rft_id=info:doi/10.11936%2Fbjutxb2022080003&rft.externalDocID=bjgydxxb202409006 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbjgydxxb%2Fbjgydxxb.jpg |