采用改进最大相关熵自适应迭代容积卡尔曼滤波算法的锂离子电池荷电状态估计

TM912; 针对非高斯噪声干扰下传统滤波算法在估计锂离子电池荷电状态(SOC)时存在不稳定以及精度低的问题,提出一种改进的最大相关熵自适应迭代容积卡尔曼滤波(IMCC-AICKF)算法,用于估计锂离子电池荷电状态.所提算法将加权最小二乘方法与最大相关熵准则(MCC)相结合,定义了一种新的代价权函数作为优化准则,通过优化噪声最小协方差矩阵来减小滤波误差,保证长时间滤波的收敛性和稳定性;再与自适应迭代容积卡尔曼滤波(AICKF)算法相结合,对过程噪声协方差和测量噪声协方差进行更新来提高估计的准确性和鲁棒性.基于两种电池数据,在非高斯噪声干扰下,运用所提算法对电池SOC进行估计,仿真结果表明:与容...

Full description

Saved in:
Bibliographic Details
Published in西安交通大学学报 Vol. 58; no. 11; pp. 52 - 64
Main Authors 巫春玲, 赵玉冰, 马耀, 张湧, 孟锦豪
Format Journal Article
LanguageChinese
Published 长安大学能源与电气工程学院,710064,西安%西安交通大学电气工程学院,710049,西安 01.11.2024
Subjects
Online AccessGet full text
ISSN0253-987X
DOI10.7652/xjtuxb202411005

Cover

Abstract TM912; 针对非高斯噪声干扰下传统滤波算法在估计锂离子电池荷电状态(SOC)时存在不稳定以及精度低的问题,提出一种改进的最大相关熵自适应迭代容积卡尔曼滤波(IMCC-AICKF)算法,用于估计锂离子电池荷电状态.所提算法将加权最小二乘方法与最大相关熵准则(MCC)相结合,定义了一种新的代价权函数作为优化准则,通过优化噪声最小协方差矩阵来减小滤波误差,保证长时间滤波的收敛性和稳定性;再与自适应迭代容积卡尔曼滤波(AICKF)算法相结合,对过程噪声协方差和测量噪声协方差进行更新来提高估计的准确性和鲁棒性.基于两种电池数据,在非高斯噪声干扰下,运用所提算法对电池SOC进行估计,仿真结果表明:与容积卡尔曼滤波(CKF)算法和最大相关熵容积卡尔曼滤波(IMCC-CKF)算法相比,IMCC-AICKF算法对荷电状态估计的最大绝对误差、平均绝对误差和均方根误差都是最小的,且平均绝对误差和均方根误差均小于1%;在给定初始值错误的情况下,IMCC-AICKF算法可以准确收敛到真实值,具有较好的鲁棒性.所提算法在非高斯噪声下能实现更准确的估计,是一种估计精度高且鲁棒性好的SOC估计方法.
AbstractList TM912; 针对非高斯噪声干扰下传统滤波算法在估计锂离子电池荷电状态(SOC)时存在不稳定以及精度低的问题,提出一种改进的最大相关熵自适应迭代容积卡尔曼滤波(IMCC-AICKF)算法,用于估计锂离子电池荷电状态.所提算法将加权最小二乘方法与最大相关熵准则(MCC)相结合,定义了一种新的代价权函数作为优化准则,通过优化噪声最小协方差矩阵来减小滤波误差,保证长时间滤波的收敛性和稳定性;再与自适应迭代容积卡尔曼滤波(AICKF)算法相结合,对过程噪声协方差和测量噪声协方差进行更新来提高估计的准确性和鲁棒性.基于两种电池数据,在非高斯噪声干扰下,运用所提算法对电池SOC进行估计,仿真结果表明:与容积卡尔曼滤波(CKF)算法和最大相关熵容积卡尔曼滤波(IMCC-CKF)算法相比,IMCC-AICKF算法对荷电状态估计的最大绝对误差、平均绝对误差和均方根误差都是最小的,且平均绝对误差和均方根误差均小于1%;在给定初始值错误的情况下,IMCC-AICKF算法可以准确收敛到真实值,具有较好的鲁棒性.所提算法在非高斯噪声下能实现更准确的估计,是一种估计精度高且鲁棒性好的SOC估计方法.
Abstract_FL In response to the issues of instability and low accuracy in estimating the state of charge(SOC)of lithium-ion batteries under non-Gaussian noise interference traditional filtering algorithms,an innovation maximum correlation-entropy criterion adaptive iterated cubature Kalman filtering algorithm(IMCC-AICKF)is proposed for SOC estimation of lithium-ion batteries.The proposed algorithm combines the weighted least squares method with the maximum correlation-entropy criterion(MCC)to define a new cost-weight function as the optimization criterion.This approach aids in reducing filtering errors by optimizing the minimum noise covariance matrix to reduce filtering errors and stability of long-term filtering.Subsequently,by integrating with the adaptive iterative covariance Kalman filter(AICKF),the process noise covariances and measurement noise covariances are updated to enhance estimation accuracy and robustness.Based on two sets of battery data and under non-Gaussian noise interference,the proposed algorithm is applied to estimate the SOC of the batteries.The simulation results demonstrate that compared to cubature Kalman filtering(CKF)and innovation maximum correlation-entropy criterion cubature Kalman filtering(IMCC-CKF),the IMCC-AICKF algorithm yields the smallest maximum absolute error(MaxAE),mean absolute error(MAE),and root mean square error(RMSE)in SOC estimation,with both MAE and RMSE below 1%.Additionally,even with initial value errors,IMCC-AICKF can accurately converge to the true values,demonstrating good robustness.The proposed algorithm achieves more accurate estimation under non-Gaussian noise,providing a high-precision and robust method for SOC estimation.
Author 孟锦豪
张湧
巫春玲
赵玉冰
马耀
AuthorAffiliation 长安大学能源与电气工程学院,710064,西安%西安交通大学电气工程学院,710049,西安
AuthorAffiliation_xml – name: 长安大学能源与电气工程学院,710064,西安%西安交通大学电气工程学院,710049,西安
Author_FL WU Chunling
ZHAO Yubing
MA Yao
ZHANG Yong
MENG Jinhao
Author_FL_xml – sequence: 1
  fullname: WU Chunling
– sequence: 2
  fullname: ZHAO Yubing
– sequence: 3
  fullname: MA Yao
– sequence: 4
  fullname: ZHANG Yong
– sequence: 5
  fullname: MENG Jinhao
Author_xml – sequence: 1
  fullname: 巫春玲
– sequence: 2
  fullname: 赵玉冰
– sequence: 3
  fullname: 马耀
– sequence: 4
  fullname: 张湧
– sequence: 5
  fullname: 孟锦豪
BookMark eNpNkE9LAkEAxedgkJnnPkOHrdmdnZ3dY0j_QOhS0E1m3J1QYoVWaY8mlRAIHTaC7JAlGYFmLFam4JdxZ9ZvkVCHTu_BD94P3hJIuCXXAWBFhWvEwNq6XyxXfKZBTVdVCHECJKGGkWKZ5HARpD2vwCBWEcEGspKgMKvXZfAigmE8aYr7atTuyOZXdBHKy0Fcf51Va9F3EE-609FT1BvKzlvUaEX9QDTHYtQW4aPs3YrwRt6dz4KafB5F3WsZDMT7Q9z4nBd59SGqZ9NxP-61lsECp8eek_7LFDjY2tzP7CjZve3dzEZW8VSoYyVPDcY0zKBNLe6YSOe6SriZt2yDWA5zCLQQ15GZR5SZBjZsAjHCpjUHkDMIUQqs_u6eUpdT9yhXLFVO3Lkx59Ni2fb_XYN-AIXog00
ClassificationCodes TM912
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.7652/xjtuxb202411005
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Estimation of Lithium-Ion Battery State of Charge Using an Innovation Maximum Correlation-Entropy Criterion Adaptive Iterative Cubature Kalman Filter Algorithm
EndPage 64
ExternalDocumentID xajtdxxb202411005
GrantInformation_xml – fundername: (国家重点研发计划); (陕西省重点研发计划资助项目); (陕西省教育厅服务地方专项科学研究计划资助项目)
  funderid: (国家重点研发计划); (陕西省重点研发计划资助项目); (陕西省教育厅服务地方专项科学研究计划资助项目)
GroupedDBID -03
2B.
4A8
5XA
5XD
92H
92I
93N
AAABJ
AAQEF
ABLSY
ABPYQ
ABVRV
ACECN
ACGFS
ACTRF
ADCJG
ADGMY
ADMLS
ADMQQ
ADRFT
ADZSZ
AENOO
AEXCR
AFSCH
AFTSM
AFZMG
AHIBC
AIVZI
AJZVN
ALMA_UNASSIGNED_HOLDINGS
AMVHM
CCEZO
CEKLB
CW9
PDI
PSX
TCJ
TGT
U1G
U5M
UY8
ID FETCH-LOGICAL-s1045-ca6bb25b0da9fe834f417f8c9d679ebe7093f438c3ab8656d7053589e700fb003
ISSN 0253-987X
IngestDate Thu May 29 04:05:50 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Keywords 荷电状态估计
non-Gaussian noise
state of charge estimation
cubature Kalman filter
robustness
maximum correlation-entropy criterion
容积卡尔曼滤波
最大相关熵准则
非高斯噪声
鲁棒性
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1045-ca6bb25b0da9fe834f417f8c9d679ebe7093f438c3ab8656d7053589e700fb003
PageCount 13
ParticipantIDs wanfang_journals_xajtdxxb202411005
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationTitle 西安交通大学学报
PublicationTitle_FL Journal of Xi'an Jiaotong University
PublicationYear 2024
Publisher 长安大学能源与电气工程学院,710064,西安%西安交通大学电气工程学院,710049,西安
Publisher_xml – name: 长安大学能源与电气工程学院,710064,西安%西安交通大学电气工程学院,710049,西安
SSID ssib051375639
ssib052002712
ssj0040370
ssib002258166
ssib001129897
ssib023167206
Score 2.4203362
Snippet TM912;...
SourceID wanfang
SourceType Aggregation Database
StartPage 52
Title 采用改进最大相关熵自适应迭代容积卡尔曼滤波算法的锂离子电池荷电状态估计
URI https://d.wanfangdata.com.cn/periodical/xajtdxxb202411005
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9RAFG8QLnowfsbvEOMcq_2azsxxultCjHoREm6kH1uVAyayJBtOSFQSExIPa0zEgygRowExBBUh4Z9ht8t_4XvTQsvHQTFpmtnXN-_93nvTzsdOXzXthu1glg-b6g4PXN0RUazDKMHRzVocJ2bAg1qkdlvcc_sHndtDdKir-2tp19J4PbwZTRz6XslRogo0iCu-JfsPkd0VCgQoQ3zhDBGG81_FmPiCwGQeDp8R4RDJie9iwRPE58TrI8JTlApuaPApkcCTMXvE40jhlHg2UrhLPIq1QJqUSrJBuIU8nkSZmUBZJT7I94i0lUBf6WIoVvYpgVUiTVXLULVcpauCBaylKKBRWqqWTwTLKYIqYJJwB7VDXZ7xqIqoq0qEkVuKUIFuEmkozFXisdIlMEcSz0UetMJUmCsICZhBqTTLg3JFpGhdZhEXil8qtMoPgKrwnkICqIqCi-ok3Wm8ynoAnvleyUZE4CqrYOEI1Nu5giqpioFRsAgi4agoA8EKY4_8ijLdRfdLVl67wVtgz9qN8uY-8w4aAzps4lWVSKkc7WATAWx7PJ4FNbNPgYc2x72SHNAlMLpWBTM6uQ4UDvGvRY_q9P8A44hDwZT6QovauuBsqNxxU15-QJmlbjhLipwP6LIs-fuHCsylmHq4MVIfb4QYG8ydSItR0e5e1UYwUo8bJZ5jWo_FGO4J6ZHVu3fuF7MPEz9nUF4dofiv_M5vC5NOWMWmBmrajLpFUl5MgGaxIvudY9gsWyLObc8ykyHwW_tgqzcOR5Ng9EFpcDxwSjuZz2p7ZfaIOq11TTw8o50o5To9qz3anp5Om5_bzbXO5mz73WRrfiGd_dV6vpK-WO1Mf9menGr9bnY2F7fWP7aW1tKFb62ZudZysz270V6fb698SJfetFdep2-fbTen0k_rrcVXaXO1_f19Z-YnFNKXP9qTT7c2ljtLc-e0wT5_oNKv59950cdMmFHqUeCGoUVDIw5EUuO2kzgmS3gkYpcJ6GSYIezEsXlkByGH-WfMMCkVF3DBSHBYcl7rHn08Wrug9XIexYzZkeskscMpC21eg_6H0oQm4P7wonY9d9Rw_hwfGz4Q4Et_w3RZO17c0Ve07vqT8dpVmJ_Uw2t5u_gDhnD3Eg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%87%87%E7%94%A8%E6%94%B9%E8%BF%9B%E6%9C%80%E5%A4%A7%E7%9B%B8%E5%85%B3%E7%86%B5%E8%87%AA%E9%80%82%E5%BA%94%E8%BF%AD%E4%BB%A3%E5%AE%B9%E7%A7%AF%E5%8D%A1%E5%B0%94%E6%9B%BC%E6%BB%A4%E6%B3%A2%E7%AE%97%E6%B3%95%E7%9A%84%E9%94%82%E7%A6%BB%E5%AD%90%E7%94%B5%E6%B1%A0%E8%8D%B7%E7%94%B5%E7%8A%B6%E6%80%81%E4%BC%B0%E8%AE%A1&rft.jtitle=%E8%A5%BF%E5%AE%89%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E5%B7%AB%E6%98%A5%E7%8E%B2&rft.au=%E8%B5%B5%E7%8E%89%E5%86%B0&rft.au=%E9%A9%AC%E8%80%80&rft.au=%E5%BC%A0%E6%B9%A7&rft.date=2024-11-01&rft.pub=%E9%95%BF%E5%AE%89%E5%A4%A7%E5%AD%A6%E8%83%BD%E6%BA%90%E4%B8%8E%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C710064%2C%E8%A5%BF%E5%AE%89%25%E8%A5%BF%E5%AE%89%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C710049%2C%E8%A5%BF%E5%AE%89&rft.issn=0253-987X&rft.volume=58&rft.issue=11&rft.spage=52&rft.epage=64&rft_id=info:doi/10.7652%2Fxjtuxb202411005&rft.externalDocID=xajtdxxb202411005
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxajtdxxb%2Fxajtdxxb.jpg