中心约束对比学习的自集成卫星异常检测方法

V557+.3; 针对现有异常检测算法对遥测参数特征提取缺乏区分度以及异常决策信息丢失等问题,提出基于中心约束对比的自集成异常检测方法.融合对比损失和中心损失将正常样本映射到紧凑的特征分布,并采用多视角、多层次特征集成的方式实现样本的异常检测,提升了模型对卫星复杂工况的适应性.采用科学卫星真实遥测参数数据和基准数据集进行验证,结果表明,所提方法在真实遥测参数上比最优基准方法的F值提升21.8%,且具有更好的噪声抗干扰性.实验结果验证了方法的可行性,能够为卫星地面运管提供有效的判读支持....

Full description

Saved in:
Bibliographic Details
Published in国防科技大学学报 Vol. 46; no. 6; pp. 33 - 42
Main Authors 郭国航, 李虎, 刘玉荣, 胡钛
Format Journal Article
LanguageChinese
Published 中国科学院大学,北京 100049%中国科学院国家空间科学中心,北京 100190 01.11.2024
中国科学院国家空间科学中心,北京 100190
Subjects
Online AccessGet full text
ISSN1001-2486
DOI10.11887/j.cn.202406004

Cover

Abstract V557+.3; 针对现有异常检测算法对遥测参数特征提取缺乏区分度以及异常决策信息丢失等问题,提出基于中心约束对比的自集成异常检测方法.融合对比损失和中心损失将正常样本映射到紧凑的特征分布,并采用多视角、多层次特征集成的方式实现样本的异常检测,提升了模型对卫星复杂工况的适应性.采用科学卫星真实遥测参数数据和基准数据集进行验证,结果表明,所提方法在真实遥测参数上比最优基准方法的F值提升21.8%,且具有更好的噪声抗干扰性.实验结果验证了方法的可行性,能够为卫星地面运管提供有效的判读支持.
AbstractList V557+.3; 针对现有异常检测算法对遥测参数特征提取缺乏区分度以及异常决策信息丢失等问题,提出基于中心约束对比的自集成异常检测方法.融合对比损失和中心损失将正常样本映射到紧凑的特征分布,并采用多视角、多层次特征集成的方式实现样本的异常检测,提升了模型对卫星复杂工况的适应性.采用科学卫星真实遥测参数数据和基准数据集进行验证,结果表明,所提方法在真实遥测参数上比最优基准方法的F值提升21.8%,且具有更好的噪声抗干扰性.实验结果验证了方法的可行性,能够为卫星地面运管提供有效的判读支持.
Abstract_FL To deal with the problem of the existing telemetry anomaly detection algorithms,such as the poor discrimination capability of the feature,and loss of anomaly decision-making information,a self-ensemble anomaly detection method based on center-constrained contrastive learning was proposed.The method mapped the normal samples to a compact feature distribution by combining contrastive loss and center loss,and a multi-view and multi-level ensembled feature decision method was used to obtain the anomaly detection of the sample.The method improves the adaptability of the model to the complex working conditions of the satellite.The real telemetry parameter data of scientific satellite and benchmark data set are used for verification.The proposed method is robust to noise,and achieves 21.8%improvement of F score than that of the state of the art method.The results of the experiment demonstrate the feasibility of the method,which can provide effective support for satellite operation.
Author 刘玉荣
郭国航
胡钛
李虎
AuthorAffiliation 中国科学院国家空间科学中心,北京 100190;中国科学院大学,北京 100049%中国科学院国家空间科学中心,北京 100190
AuthorAffiliation_xml – name: 中国科学院国家空间科学中心,北京 100190;中国科学院大学,北京 100049%中国科学院国家空间科学中心,北京 100190
Author_FL LI Hu
LIU Yurong
HU Tai
GUO Guohang
Author_FL_xml – sequence: 1
  fullname: GUO Guohang
– sequence: 2
  fullname: LI Hu
– sequence: 3
  fullname: LIU Yurong
– sequence: 4
  fullname: HU Tai
Author_xml – sequence: 1
  fullname: 郭国航
– sequence: 2
  fullname: 李虎
– sequence: 3
  fullname: 刘玉荣
– sequence: 4
  fullname: 胡钛
BookMark eNo9jz9Lw0AcQG-oYK2d_QwOib_7k9wJLlL8BwWX7iXJ3RWjXMEgdhQVFUTooFIqUkHooJQOIiQi-GV6V_0WCorT297jzaGSaRuF0AIGH2Mh-FLqJ8YnQBiEAKyEyhgAe4SJcBZVs2wnBkJxyDHHZbQyyUf242T6NnT3Azsu3PjajoaT4mHaP_08f_q6O3MXXXv17HoD-35s89w9HrnXS3dbuJebeTSjo71MVf9YQY31tUZt06tvb2zVVutehoExTzOupCaRFFonQkKSUAqY0wAUCXnAQcskIGFMlYiICjgnnFCJSSyXY6WBVtDir_YwMjoyrWbaPtg3P8FmS--mstOJ_2fpN1TzYZI
ClassificationCodes V557+.3
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11887/j.cn.202406004
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Military & Naval Science
DocumentTitle_FL Self-ensemble satellite anomaly detection method for center-constrained contrastive learning
EndPage 42
ExternalDocumentID gfkjdxxb202406004
GrantInformation_xml – fundername: 中国科学院战略性先导科技专项
  funderid: (XDA15040100)
GroupedDBID -03
2B.
4A8
5XA
5XD
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CW9
PSX
TCJ
TGT
TN5
U1G
U5M
ID FETCH-LOGICAL-s1044-f47edf2ad8ffc8d0cc33017350e267570fdc526b3e8a2e5772723d12bd9bef03
ISSN 1001-2486
IngestDate Thu May 29 04:04:51 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Keywords scientific satellite
contrastive learning
科学卫星
对比学习
anomaly detection
遥测参数
telemetry data
异常检测
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1044-f47edf2ad8ffc8d0cc33017350e267570fdc526b3e8a2e5772723d12bd9bef03
PageCount 10
ParticipantIDs wanfang_journals_gfkjdxxb202406004
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationTitle 国防科技大学学报
PublicationTitle_FL Journal of National University of Defense Technology
PublicationYear 2024
Publisher 中国科学院大学,北京 100049%中国科学院国家空间科学中心,北京 100190
中国科学院国家空间科学中心,北京 100190
Publisher_xml – name: 中国科学院大学,北京 100049%中国科学院国家空间科学中心,北京 100190
– name: 中国科学院国家空间科学中心,北京 100190
SSID ssib023167171
ssib057620141
ssib051370975
ssib001129263
ssj0000556656
Score 2.4020596
Snippet V557+.3;...
SourceID wanfang
SourceType Aggregation Database
StartPage 33
Title 中心约束对比学习的自集成卫星异常检测方法
URI https://d.wanfangdata.com.cn/periodical/gfkjdxxb202406004
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxUxFB762LgRn9QnFzFu5OpMkplJwE3m3rkUsd1Yobsyz_qAK_QBtStRUUEEFyqiSAWhC6V0IUIrgn-md6pbf4HnZNKZ1luhFYYhJCfnfMnJzDkJyYllnU-zKLaj2GnKVDJcraJNGUdxkyWZyHjOWKIPiY2Ne6M3-NVJd3Jg8Pe2XUvzc_GlZHHXcyX_o1XIA73iKdl9aLZiChmQBv3CGzQM7z3pmIScBIKoNgldEnSIYCT0SaCI8kjoEdkmsoNFqkMCiTmQkFzntDUNx3xlYy2piIAiQYRPlCKhJDIgQvMRgkgbawmoFWjOwnAOWkRQnRD4oAiGmycgEQB9SewZ6QEj5VWXW94wVgQpQVuLAw4UkSgA42i5SrMCtBwza9hVQtMod2vUIBvog7I_DGOB8JWqSXS_iBBLJJCHdYmrWyoQA5QLqSuDIFaTCM3f0XgpiNi-aEK5OT24Ncx3qMfAqZpXtUEiDEV3aSdtaUwtIn3NCprauujo6Rah7r65GxooCkngaWKJTJEGRg3frXrf-PoXJqe8jtXYN9xBR7mJPm4MoFkDvtVnzcoQJcYvKoOg9VtcgYtWYHITjCaM_qFd3if9Vxjz6fzO7XRhIa5oBq1h6vu4tWJYtceuXa-deHBBaR0UjmKsBqeetLgO821ZO70wYaa4W7laWcXwUJ6-trlqrYnphVgv70Sqz-p186g7vc2tnDhkHTTzwYYqP-7D1sDizSPWyJiOnT9zr3GhMR7BH6NhTPBR68rG2krvx8PNb8vF-6Xe6nqx-rK3sryx_mHz7aOfTz79eve4ePqi9_xz8Wap9_1Bb22t-Hi_-PqseL1efHl1zJrohBOt0aa5AaU569icN3PuZ2lOo1TkeSJSO0kYGGSfuXZGYabv23mauNSLWSYimrk-7qpgqUPjVMZZbrPj1lD3bjcbsRrcyxPXEzb8mCV340xKantZKjEAZiKoOGGdM_0wZX5ws1N9Kju5F6JT1oH6izttDc3NzGdnwHGfi88aTf8BFbGwOA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%AD%E5%BF%83%E7%BA%A6%E6%9D%9F%E5%AF%B9%E6%AF%94%E5%AD%A6%E4%B9%A0%E7%9A%84%E8%87%AA%E9%9B%86%E6%88%90%E5%8D%AB%E6%98%9F%E5%BC%82%E5%B8%B8%E6%A3%80%E6%B5%8B%E6%96%B9%E6%B3%95&rft.jtitle=%E5%9B%BD%E9%98%B2%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E9%83%AD%E5%9B%BD%E8%88%AA&rft.au=%E6%9D%8E%E8%99%8E&rft.au=%E5%88%98%E7%8E%89%E8%8D%A3&rft.au=%E8%83%A1%E9%92%9B&rft.date=2024-11-01&rft.pub=%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%E9%99%A2%E5%A4%A7%E5%AD%A6%2C%E5%8C%97%E4%BA%AC+100049%25%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%E9%99%A2%E5%9B%BD%E5%AE%B6%E7%A9%BA%E9%97%B4%E7%A7%91%E5%AD%A6%E4%B8%AD%E5%BF%83%2C%E5%8C%97%E4%BA%AC+100190&rft.issn=1001-2486&rft.volume=46&rft.issue=6&rft.spage=33&rft.epage=42&rft_id=info:doi/10.11887%2Fj.cn.202406004&rft.externalDocID=gfkjdxxb202406004
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fgfkjdxxb%2Fgfkjdxxb.jpg