中心约束对比学习的自集成卫星异常检测方法
V557+.3; 针对现有异常检测算法对遥测参数特征提取缺乏区分度以及异常决策信息丢失等问题,提出基于中心约束对比的自集成异常检测方法.融合对比损失和中心损失将正常样本映射到紧凑的特征分布,并采用多视角、多层次特征集成的方式实现样本的异常检测,提升了模型对卫星复杂工况的适应性.采用科学卫星真实遥测参数数据和基准数据集进行验证,结果表明,所提方法在真实遥测参数上比最优基准方法的F值提升21.8%,且具有更好的噪声抗干扰性.实验结果验证了方法的可行性,能够为卫星地面运管提供有效的判读支持....
Saved in:
Published in | 国防科技大学学报 Vol. 46; no. 6; pp. 33 - 42 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Chinese |
Published |
中国科学院大学,北京 100049%中国科学院国家空间科学中心,北京 100190
01.11.2024
中国科学院国家空间科学中心,北京 100190 |
Subjects | |
Online Access | Get full text |
ISSN | 1001-2486 |
DOI | 10.11887/j.cn.202406004 |
Cover
Abstract | V557+.3; 针对现有异常检测算法对遥测参数特征提取缺乏区分度以及异常决策信息丢失等问题,提出基于中心约束对比的自集成异常检测方法.融合对比损失和中心损失将正常样本映射到紧凑的特征分布,并采用多视角、多层次特征集成的方式实现样本的异常检测,提升了模型对卫星复杂工况的适应性.采用科学卫星真实遥测参数数据和基准数据集进行验证,结果表明,所提方法在真实遥测参数上比最优基准方法的F值提升21.8%,且具有更好的噪声抗干扰性.实验结果验证了方法的可行性,能够为卫星地面运管提供有效的判读支持. |
---|---|
AbstractList | V557+.3; 针对现有异常检测算法对遥测参数特征提取缺乏区分度以及异常决策信息丢失等问题,提出基于中心约束对比的自集成异常检测方法.融合对比损失和中心损失将正常样本映射到紧凑的特征分布,并采用多视角、多层次特征集成的方式实现样本的异常检测,提升了模型对卫星复杂工况的适应性.采用科学卫星真实遥测参数数据和基准数据集进行验证,结果表明,所提方法在真实遥测参数上比最优基准方法的F值提升21.8%,且具有更好的噪声抗干扰性.实验结果验证了方法的可行性,能够为卫星地面运管提供有效的判读支持. |
Abstract_FL | To deal with the problem of the existing telemetry anomaly detection algorithms,such as the poor discrimination capability of the feature,and loss of anomaly decision-making information,a self-ensemble anomaly detection method based on center-constrained contrastive learning was proposed.The method mapped the normal samples to a compact feature distribution by combining contrastive loss and center loss,and a multi-view and multi-level ensembled feature decision method was used to obtain the anomaly detection of the sample.The method improves the adaptability of the model to the complex working conditions of the satellite.The real telemetry parameter data of scientific satellite and benchmark data set are used for verification.The proposed method is robust to noise,and achieves 21.8%improvement of F score than that of the state of the art method.The results of the experiment demonstrate the feasibility of the method,which can provide effective support for satellite operation. |
Author | 刘玉荣 郭国航 胡钛 李虎 |
AuthorAffiliation | 中国科学院国家空间科学中心,北京 100190;中国科学院大学,北京 100049%中国科学院国家空间科学中心,北京 100190 |
AuthorAffiliation_xml | – name: 中国科学院国家空间科学中心,北京 100190;中国科学院大学,北京 100049%中国科学院国家空间科学中心,北京 100190 |
Author_FL | LI Hu LIU Yurong HU Tai GUO Guohang |
Author_FL_xml | – sequence: 1 fullname: GUO Guohang – sequence: 2 fullname: LI Hu – sequence: 3 fullname: LIU Yurong – sequence: 4 fullname: HU Tai |
Author_xml | – sequence: 1 fullname: 郭国航 – sequence: 2 fullname: 李虎 – sequence: 3 fullname: 刘玉荣 – sequence: 4 fullname: 胡钛 |
BookMark | eNo9jz9Lw0AcQG-oYK2d_QwOib_7k9wJLlL8BwWX7iXJ3RWjXMEgdhQVFUTooFIqUkHooJQOIiQi-GV6V_0WCorT297jzaGSaRuF0AIGH2Mh-FLqJ8YnQBiEAKyEyhgAe4SJcBZVs2wnBkJxyDHHZbQyyUf242T6NnT3Azsu3PjajoaT4mHaP_08f_q6O3MXXXv17HoD-35s89w9HrnXS3dbuJebeTSjo71MVf9YQY31tUZt06tvb2zVVutehoExTzOupCaRFFonQkKSUAqY0wAUCXnAQcskIGFMlYiICjgnnFCJSSyXY6WBVtDir_YwMjoyrWbaPtg3P8FmS--mstOJ_2fpN1TzYZI |
ClassificationCodes | V557+.3 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.11887/j.cn.202406004 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Military & Naval Science |
DocumentTitle_FL | Self-ensemble satellite anomaly detection method for center-constrained contrastive learning |
EndPage | 42 |
ExternalDocumentID | gfkjdxxb202406004 |
GrantInformation_xml | – fundername: 中国科学院战略性先导科技专项 funderid: (XDA15040100) |
GroupedDBID | -03 2B. 4A8 5XA 5XD 92H 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB CW9 PSX TCJ TGT TN5 U1G U5M |
ID | FETCH-LOGICAL-s1044-f47edf2ad8ffc8d0cc33017350e267570fdc526b3e8a2e5772723d12bd9bef03 |
ISSN | 1001-2486 |
IngestDate | Thu May 29 04:04:51 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Keywords | scientific satellite contrastive learning 科学卫星 对比学习 anomaly detection 遥测参数 telemetry data 异常检测 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1044-f47edf2ad8ffc8d0cc33017350e267570fdc526b3e8a2e5772723d12bd9bef03 |
PageCount | 10 |
ParticipantIDs | wanfang_journals_gfkjdxxb202406004 |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 国防科技大学学报 |
PublicationTitle_FL | Journal of National University of Defense Technology |
PublicationYear | 2024 |
Publisher | 中国科学院大学,北京 100049%中国科学院国家空间科学中心,北京 100190 中国科学院国家空间科学中心,北京 100190 |
Publisher_xml | – name: 中国科学院大学,北京 100049%中国科学院国家空间科学中心,北京 100190 – name: 中国科学院国家空间科学中心,北京 100190 |
SSID | ssib023167171 ssib057620141 ssib051370975 ssib001129263 ssj0000556656 |
Score | 2.4020596 |
Snippet | V557+.3;... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 33 |
Title | 中心约束对比学习的自集成卫星异常检测方法 |
URI | https://d.wanfangdata.com.cn/periodical/gfkjdxxb202406004 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxUxFB762LgRn9QnFzFu5OpMkplJwE3m3rkUsd1Yobsyz_qAK_QBtStRUUEEFyqiSAWhC6V0IUIrgn-md6pbf4HnZNKZ1luhFYYhJCfnfMnJzDkJyYllnU-zKLaj2GnKVDJcraJNGUdxkyWZyHjOWKIPiY2Ne6M3-NVJd3Jg8Pe2XUvzc_GlZHHXcyX_o1XIA73iKdl9aLZiChmQBv3CGzQM7z3pmIScBIKoNgldEnSIYCT0SaCI8kjoEdkmsoNFqkMCiTmQkFzntDUNx3xlYy2piIAiQYRPlCKhJDIgQvMRgkgbawmoFWjOwnAOWkRQnRD4oAiGmycgEQB9SewZ6QEj5VWXW94wVgQpQVuLAw4UkSgA42i5SrMCtBwza9hVQtMod2vUIBvog7I_DGOB8JWqSXS_iBBLJJCHdYmrWyoQA5QLqSuDIFaTCM3f0XgpiNi-aEK5OT24Ncx3qMfAqZpXtUEiDEV3aSdtaUwtIn3NCprauujo6Rah7r65GxooCkngaWKJTJEGRg3frXrf-PoXJqe8jtXYN9xBR7mJPm4MoFkDvtVnzcoQJcYvKoOg9VtcgYtWYHITjCaM_qFd3if9Vxjz6fzO7XRhIa5oBq1h6vu4tWJYtceuXa-deHBBaR0UjmKsBqeetLgO821ZO70wYaa4W7laWcXwUJ6-trlqrYnphVgv70Sqz-p186g7vc2tnDhkHTTzwYYqP-7D1sDizSPWyJiOnT9zr3GhMR7BH6NhTPBR68rG2krvx8PNb8vF-6Xe6nqx-rK3sryx_mHz7aOfTz79eve4ePqi9_xz8Wap9_1Bb22t-Hi_-PqseL1efHl1zJrohBOt0aa5AaU569icN3PuZ2lOo1TkeSJSO0kYGGSfuXZGYabv23mauNSLWSYimrk-7qpgqUPjVMZZbrPj1lD3bjcbsRrcyxPXEzb8mCV340xKantZKjEAZiKoOGGdM_0wZX5ws1N9Kju5F6JT1oH6izttDc3NzGdnwHGfi88aTf8BFbGwOA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%AD%E5%BF%83%E7%BA%A6%E6%9D%9F%E5%AF%B9%E6%AF%94%E5%AD%A6%E4%B9%A0%E7%9A%84%E8%87%AA%E9%9B%86%E6%88%90%E5%8D%AB%E6%98%9F%E5%BC%82%E5%B8%B8%E6%A3%80%E6%B5%8B%E6%96%B9%E6%B3%95&rft.jtitle=%E5%9B%BD%E9%98%B2%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E9%83%AD%E5%9B%BD%E8%88%AA&rft.au=%E6%9D%8E%E8%99%8E&rft.au=%E5%88%98%E7%8E%89%E8%8D%A3&rft.au=%E8%83%A1%E9%92%9B&rft.date=2024-11-01&rft.pub=%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%E9%99%A2%E5%A4%A7%E5%AD%A6%2C%E5%8C%97%E4%BA%AC+100049%25%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%E9%99%A2%E5%9B%BD%E5%AE%B6%E7%A9%BA%E9%97%B4%E7%A7%91%E5%AD%A6%E4%B8%AD%E5%BF%83%2C%E5%8C%97%E4%BA%AC+100190&rft.issn=1001-2486&rft.volume=46&rft.issue=6&rft.spage=33&rft.epage=42&rft_id=info:doi/10.11887%2Fj.cn.202406004&rft.externalDocID=gfkjdxxb202406004 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fgfkjdxxb%2Fgfkjdxxb.jpg |