Multi-output Gaussian Process Regression Model with Combined Kernel Function for Polyester Esterification Processes
TQ342%TP181; In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the characteristics of strong coupling,nonlinearity and complex mechanism....
Saved in:
Published in | 东华大学学报(英文版) Vol. 40; no. 1; pp. 27 - 33 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
College of Information Science and Technology,Donghua University,Shanghai 201620,China
2023
Engineering Research Center of Digitized Textile & Apparel Technology,Ministry of Education,Donghua University,Shanghai 201620,China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | TQ342%TP181; In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the characteristics of strong coupling,nonlinearity and complex mechanism.To solve these problems,we put forward a multi-output Gaussian process regression(MGPR)model based on the combined kernel function for the polyester esterification process.Since the seasonal and trend decomposition using loess(STL)can extract the periodic and trend characteristics of time series,a combined kernel function based on the STL and the kernel function analysis is constructed for the MGPR.The effectiveness of the proposed model is verified by the actual polyester esterification process data collected from fiber production. |
---|---|
AbstractList | TQ342%TP181; In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the characteristics of strong coupling,nonlinearity and complex mechanism.To solve these problems,we put forward a multi-output Gaussian process regression(MGPR)model based on the combined kernel function for the polyester esterification process.Since the seasonal and trend decomposition using loess(STL)can extract the periodic and trend characteristics of time series,a combined kernel function based on the STL and the kernel function analysis is constructed for the MGPR.The effectiveness of the proposed model is verified by the actual polyester esterification process data collected from fiber production. |
Author | WANG Hengqian GENG Junxian CHEN Lei |
AuthorAffiliation | Engineering Research Center of Digitized Textile & Apparel Technology,Ministry of Education,Donghua University,Shanghai 201620,China;College of Information Science and Technology,Donghua University,Shanghai 201620,China |
AuthorAffiliation_xml | – name: Engineering Research Center of Digitized Textile & Apparel Technology,Ministry of Education,Donghua University,Shanghai 201620,China;College of Information Science and Technology,Donghua University,Shanghai 201620,China |
Author_xml | – sequence: 1 fullname: WANG Hengqian – sequence: 2 fullname: GENG Junxian – sequence: 3 fullname: CHEN Lei |
BookMark | eNo9UMtOwzAQ9KFIlNJfQL5ySPErcXJEVVsQragQnCPbWbeugo3iRC1_jwsVe5iRZlaz2rlBIx88IHRHyYxWZSkeDjNaSJbljJEZI4xSSkg1QuN_9RpNYzyQNAWTglRjFDdD27ssDP3X0OOVGmJ0yuNtFwzEiN9g1yV2weNNaKDFR9fv8Tx8auehwS_Q-SQuB2_6844NHd6G9htiDx1enNFZZ9SvecmEeIuurGojTC88QR_Lxfv8KVu_rp7nj-ssUiJE1gDT0uRa6lIWurTcADUUJIGKEE2VERaI5RxMmZeU6fSv4Q0II4vcFBL4BN3_5R6Vt8rv6kMYOp8u1s2-OZ10DakkTlJJgv8AuIpjeQ |
ClassificationCodes | TQ342%TP181 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.19884/j.1672-5220.202111009 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 33 |
ExternalDocumentID | dhdxxb_e202301004 |
GroupedDBID | -02 -0B -SB -S~ 188 2B. 4A8 5VR 5XA 5XC 8RM 92D 92I 92M 93N 9D9 9DB ABJNI ACGFS ADMLS AFUIB ALMA_UNASSIGNED_HOLDINGS CAJEB CCEZO CDRFL CHBEP CW9 FA0 JUIAU PSX Q-- R-B RT2 S.. T8R TCJ TGH TTC U1F U1G U5B U5L UGNYK UZ2 UZ4 |
ID | FETCH-LOGICAL-s1044-de2b7c5b7b876b8f3ce1c1e70e900b1ac4fe0f33ec85812b211c3de4c765c67e3 |
ISSN | 1672-5220 |
IngestDate | Thu May 29 03:59:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | multi-output Gaussian process regression seasonal and trend decomposition using loess(STL) combined kernel function polyester esterification process |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1044-de2b7c5b7b876b8f3ce1c1e70e900b1ac4fe0f33ec85812b211c3de4c765c67e3 |
PageCount | 7 |
ParticipantIDs | wanfang_journals_dhdxxb_e202301004 |
PublicationCentury | 2000 |
PublicationDate | 2023 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023 |
PublicationDecade | 2020 |
PublicationTitle | 东华大学学报(英文版) |
PublicationTitle_FL | Journal of Donghua University(English Edition) |
PublicationYear | 2023 |
Publisher | College of Information Science and Technology,Donghua University,Shanghai 201620,China Engineering Research Center of Digitized Textile & Apparel Technology,Ministry of Education,Donghua University,Shanghai 201620,China |
Publisher_xml | – name: Engineering Research Center of Digitized Textile & Apparel Technology,Ministry of Education,Donghua University,Shanghai 201620,China – name: College of Information Science and Technology,Donghua University,Shanghai 201620,China |
SSID | ssj0000627409 |
Score | 2.2257366 |
Snippet | TQ342%TP181; In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 27 |
Title | Multi-output Gaussian Process Regression Model with Combined Kernel Function for Polyester Esterification Processes |
URI | https://d.wanfangdata.com.cn/periodical/dhdxxb-e202301004 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBehvWyHsU-27gMxplNwJ39KPjqJk9C1YdCW9RYsWU4Kw9maGLL957vtyVIclfbQ7SLEkyMjvV_0PvzeE0KfRFD4TCVgliSCeRFjqceLKvVkEFYSSJK3Wa5ns2R6GZ1cxVe93h8naqnZiGP5-968kv_hKtCArzpL9h84200KBOgDf6EFDkP7IB632bPeqtn8aDb9SdGs24xIG_sPO7cwQa51e-OZDUeHAwCMYVAzv6ibGohjEGxdvOHX1fdfbemEfq5bHUZkAGLntAGHVpkleUQGnKRDkseEjwjPdSeLSMbazohkidNJCM9IFpN8TAZDwjnJOeEDMvD1UAqj8CtGeNoOmWc6L8W3bDYBEVkvfjpwnuRAPGnqrUMbTvNZ_1Rdu94Mk2pswon2fhKbiGVOTHvC6a8I-48NAL_Rql4sm8KJXwHiuXayL4vrPqg1SUCB0t1Cbs_3hGnbO6CuADD1om4B3Z7mzNELTL2OOxIn5TwyImc39TGsy9eV-NK9jO0iH8tlud2KudJrp35byfYwAAsHZMphNjo7Pe8chLp-dNSGKHUz2wx3_crP976wzTyrK9gER0m6eIqeWOsGZwaqz1BP1c_RY6fm5Qu0dkGLd6DFFmB4D1rcghZr0OIdaLEBLd6BFgMLcQdafBu0uAPtS3Q5zi-GU8_e_OGtfRpFXqkCOCZiwQQIa8GrUCpf-opRlVIq_EJGlaJVGCrJY9BQBSxfhqWKJEtimTAVvkIH9apWrxH2mVBFEvACLJGIliCvgrBIgzIVtCwrWrxBH-2Wze0_ez2_w6Sjhzz0Fj3SfeOfe4cONjeNeg8a60Z8sLz9C73ykOI |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-output+Gaussian+Process+Regression+Model+with+Combined+Kernel+Function+for+Polyester+Esterification+Processes&rft.jtitle=%E4%B8%9C%E5%8D%8E%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=WANG+Hengqian&rft.au=GENG+Junxian&rft.au=CHEN+Lei&rft.date=2023&rft.pub=College+of+Information+Science+and+Technology%2CDonghua+University%2CShanghai+201620%2CChina&rft.issn=1672-5220&rft.volume=40&rft.issue=1&rft.spage=27&rft.epage=33&rft_id=info:doi/10.19884%2Fj.1672-5220.202111009&rft.externalDocID=dhdxxb_e202301004 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdhdxxb-e%2Fdhdxxb-e.jpg |