Multi-output Gaussian Process Regression Model with Combined Kernel Function for Polyester Esterification Processes

TQ342%TP181; In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the characteristics of strong coupling,nonlinearity and complex mechanism....

Full description

Saved in:
Bibliographic Details
Published in东华大学学报(英文版) Vol. 40; no. 1; pp. 27 - 33
Main Authors WANG Hengqian, GENG Junxian, CHEN Lei
Format Journal Article
LanguageEnglish
Published College of Information Science and Technology,Donghua University,Shanghai 201620,China 2023
Engineering Research Center of Digitized Textile & Apparel Technology,Ministry of Education,Donghua University,Shanghai 201620,China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract TQ342%TP181; In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the characteristics of strong coupling,nonlinearity and complex mechanism.To solve these problems,we put forward a multi-output Gaussian process regression(MGPR)model based on the combined kernel function for the polyester esterification process.Since the seasonal and trend decomposition using loess(STL)can extract the periodic and trend characteristics of time series,a combined kernel function based on the STL and the kernel function analysis is constructed for the MGPR.The effectiveness of the proposed model is verified by the actual polyester esterification process data collected from fiber production.
AbstractList TQ342%TP181; In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the characteristics of strong coupling,nonlinearity and complex mechanism.To solve these problems,we put forward a multi-output Gaussian process regression(MGPR)model based on the combined kernel function for the polyester esterification process.Since the seasonal and trend decomposition using loess(STL)can extract the periodic and trend characteristics of time series,a combined kernel function based on the STL and the kernel function analysis is constructed for the MGPR.The effectiveness of the proposed model is verified by the actual polyester esterification process data collected from fiber production.
Author WANG Hengqian
GENG Junxian
CHEN Lei
AuthorAffiliation Engineering Research Center of Digitized Textile & Apparel Technology,Ministry of Education,Donghua University,Shanghai 201620,China;College of Information Science and Technology,Donghua University,Shanghai 201620,China
AuthorAffiliation_xml – name: Engineering Research Center of Digitized Textile & Apparel Technology,Ministry of Education,Donghua University,Shanghai 201620,China;College of Information Science and Technology,Donghua University,Shanghai 201620,China
Author_xml – sequence: 1
  fullname: WANG Hengqian
– sequence: 2
  fullname: GENG Junxian
– sequence: 3
  fullname: CHEN Lei
BookMark eNo9UMtOwzAQ9KFIlNJfQL5ySPErcXJEVVsQragQnCPbWbeugo3iRC1_jwsVe5iRZlaz2rlBIx88IHRHyYxWZSkeDjNaSJbljJEZI4xSSkg1QuN_9RpNYzyQNAWTglRjFDdD27ssDP3X0OOVGmJ0yuNtFwzEiN9g1yV2weNNaKDFR9fv8Tx8auehwS_Q-SQuB2_6844NHd6G9htiDx1enNFZZ9SvecmEeIuurGojTC88QR_Lxfv8KVu_rp7nj-ssUiJE1gDT0uRa6lIWurTcADUUJIGKEE2VERaI5RxMmZeU6fSv4Q0II4vcFBL4BN3_5R6Vt8rv6kMYOp8u1s2-OZ10DakkTlJJgv8AuIpjeQ
ClassificationCodes TQ342%TP181
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.19884/j.1672-5220.202111009
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 33
ExternalDocumentID dhdxxb_e202301004
GroupedDBID -02
-0B
-SB
-S~
188
2B.
4A8
5VR
5XA
5XC
8RM
92D
92I
92M
93N
9D9
9DB
ABJNI
ACGFS
ADMLS
AFUIB
ALMA_UNASSIGNED_HOLDINGS
CAJEB
CCEZO
CDRFL
CHBEP
CW9
FA0
JUIAU
PSX
Q--
R-B
RT2
S..
T8R
TCJ
TGH
TTC
U1F
U1G
U5B
U5L
UGNYK
UZ2
UZ4
ID FETCH-LOGICAL-s1044-de2b7c5b7b876b8f3ce1c1e70e900b1ac4fe0f33ec85812b211c3de4c765c67e3
ISSN 1672-5220
IngestDate Thu May 29 03:59:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords multi-output Gaussian process regression
seasonal and trend decomposition using loess(STL)
combined kernel function
polyester esterification process
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1044-de2b7c5b7b876b8f3ce1c1e70e900b1ac4fe0f33ec85812b211c3de4c765c67e3
PageCount 7
ParticipantIDs wanfang_journals_dhdxxb_e202301004
PublicationCentury 2000
PublicationDate 2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023
PublicationDecade 2020
PublicationTitle 东华大学学报(英文版)
PublicationTitle_FL Journal of Donghua University(English Edition)
PublicationYear 2023
Publisher College of Information Science and Technology,Donghua University,Shanghai 201620,China
Engineering Research Center of Digitized Textile & Apparel Technology,Ministry of Education,Donghua University,Shanghai 201620,China
Publisher_xml – name: Engineering Research Center of Digitized Textile & Apparel Technology,Ministry of Education,Donghua University,Shanghai 201620,China
– name: College of Information Science and Technology,Donghua University,Shanghai 201620,China
SSID ssj0000627409
Score 2.2257366
Snippet TQ342%TP181; In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an...
SourceID wanfang
SourceType Aggregation Database
StartPage 27
Title Multi-output Gaussian Process Regression Model with Combined Kernel Function for Polyester Esterification Processes
URI https://d.wanfangdata.com.cn/periodical/dhdxxb-e202301004
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBehvWyHsU-27gMxplNwJ39KPjqJk9C1YdCW9RYsWU4Kw9maGLL957vtyVIclfbQ7SLEkyMjvV_0PvzeE0KfRFD4TCVgliSCeRFjqceLKvVkEFYSSJK3Wa5ns2R6GZ1cxVe93h8naqnZiGP5-968kv_hKtCArzpL9h84200KBOgDf6EFDkP7IB632bPeqtn8aDb9SdGs24xIG_sPO7cwQa51e-OZDUeHAwCMYVAzv6ibGohjEGxdvOHX1fdfbemEfq5bHUZkAGLntAGHVpkleUQGnKRDkseEjwjPdSeLSMbazohkidNJCM9IFpN8TAZDwjnJOeEDMvD1UAqj8CtGeNoOmWc6L8W3bDYBEVkvfjpwnuRAPGnqrUMbTvNZ_1Rdu94Mk2pswon2fhKbiGVOTHvC6a8I-48NAL_Rql4sm8KJXwHiuXayL4vrPqg1SUCB0t1Cbs_3hGnbO6CuADD1om4B3Z7mzNELTL2OOxIn5TwyImc39TGsy9eV-NK9jO0iH8tlud2KudJrp35byfYwAAsHZMphNjo7Pe8chLp-dNSGKHUz2wx3_crP976wzTyrK9gER0m6eIqeWOsGZwaqz1BP1c_RY6fm5Qu0dkGLd6DFFmB4D1rcghZr0OIdaLEBLd6BFgMLcQdafBu0uAPtS3Q5zi-GU8_e_OGtfRpFXqkCOCZiwQQIa8GrUCpf-opRlVIq_EJGlaJVGCrJY9BQBSxfhqWKJEtimTAVvkIH9apWrxH2mVBFEvACLJGIliCvgrBIgzIVtCwrWrxBH-2Wze0_ez2_w6Sjhzz0Fj3SfeOfe4cONjeNeg8a60Z8sLz9C73ykOI
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-output+Gaussian+Process+Regression+Model+with+Combined+Kernel+Function+for+Polyester+Esterification+Processes&rft.jtitle=%E4%B8%9C%E5%8D%8E%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=WANG+Hengqian&rft.au=GENG+Junxian&rft.au=CHEN+Lei&rft.date=2023&rft.pub=College+of+Information+Science+and+Technology%2CDonghua+University%2CShanghai+201620%2CChina&rft.issn=1672-5220&rft.volume=40&rft.issue=1&rft.spage=27&rft.epage=33&rft_id=info:doi/10.19884%2Fj.1672-5220.202111009&rft.externalDocID=dhdxxb_e202301004
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdhdxxb-e%2Fdhdxxb-e.jpg